The Bayesian Statistics behind Calibration Concordance

Yang Chen

Harvard University

June 5, 2017
Outline

1. Introduction
2. Scientific and Statistical Models
3. Bayesian Hierarchical Model
4. Shrinkage Estimators
5. Bayesian Computation
6. Numerical Results
7. Summary
Introduction

Scientific and Statistical Models

Bayesian Hierarchical Model

Shrinkage Estimators

Bayesian Computation

Numerical Results

Summary
E0102 – the remnant of a supernova that exploded in a neighboring galaxy known as the Small Magellanic Cloud.
Calibration Concordance Problem (Example: E0102)

Four “sources” – spectral lines that appear in the E0102 spectrum.
Calibration Concordance Problem (Example: E0102)

2 lines — Hydrogen like O VIII at 18.969Å & the resonance line of O VII from the Helium like triplet at 21.805Å.

2 lines – Hydrogen like Ne X at 12.135Å & the resonance line of Ne IX from the Helium like triplet at 13.447Å.
Calibration Concordance Problem (Example: E0102)

\[i = [\text{RGS1, RGS2, HETG-MEG, ACIS-S3, MOS1, MOS2, pn, XIS0, XIS1, XRT}] \times [560-574 \text{ eV, 654 eV, 905-922 eV, 1022 eV}] \quad (i=1..10, 11..20, 21..30, 31..40) \]

\[j = \text{E0102 fluxes in [OVII, OVIII, NeIX, NeX]} \quad (j=1..4) \]

- \(c_{1,1} = \) observed counts in RGS2/[560-574 eV], \(c_{12,2} = \) in HETG-MEG/[654 eV], \(c_{23,3} = \) in ACIS-S3/[905-922 eV], etc.
- \(a_i = \) effective area, \(\bar{f}_j = \) expected flux, \(\alpha_{ij} = \) exposure time of instrument \(i \) for source \(j \) (in this case, \(\alpha_{ik(l)} \) are identical for \(k=\{l, l+10, l+20, l+30\}, l=1..10 \))
Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area A_i, $1 \leq i \leq N$.
 - For each instrument i, we know estimated $a_i (\approx A_i)$ but not A_i.
Calibration Concordance Problem (Example: E0102)

Notations

- \(N \) Instruments with true effective area \(A_i \), \(1 \leq i \leq N \).
 - For each instrument \(i \), we know estimated \(a_i (\approx A_i) \) but not \(A_i \).

- \(M \) Sources with fluxes \(F_j \), \(1 \leq j \leq M \).
 - For each source \(j \), \(F_j \) is unknown.
Calibration Concordance Problem (Example: E0102)

Notations

- \(N \) Instruments with true effective area \(A_i, 1 \leq i \leq N \).
 - For each instrument \(i \), we know estimated \(a_i (\approx A_i) \) but not \(A_i \).

- \(M \) Sources with fluxes \(F_j, 1 \leq j \leq M \).
 - For each source \(j \), \(F_j \) is unknown.

- Photon counts \(c_{ij} \): from measuring flux \(F_j \) with instrument \(i \).
Calibration Concordance Problem (Example: E0102)

Notations

- \(N \) Instruments with true effective area \(A_i \), \(1 \leq i \leq N \).
 - For each instrument \(i \), we know estimated \(a_i(\approx A_i) \) but not \(A_i \).
- \(M \) Sources with fluxes \(F_j \), \(1 \leq j \leq M \).
 - For each source \(j \), \(F_j \) is unknown.
- Photon counts \(c_{ij} \): from measuring flux \(F_j \) with instrument \(i \).
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

1. How to adjust \(A_i \) s.t. \(c_{ij} / A_i \approx F_j \) within statistical uncertainty?
2. How to estimate the systematic error on the \(A_i \)?
Calibration Concordance Problem (Example: E0102)

Notations

- N Instruments with true effective area A_i, $1 \leq i \leq N$.
 - For each instrument i, we know estimated $a_i(\approx A_i)$ but not A_i.
- M Sources with fluxes F_j, $1 \leq j \leq M$.
 - For each source j, F_j is unknown.
- Photon counts c_{ij}: from measuring flux F_j with instrument i.
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing effective areas \Rightarrow absolute measurements.
Calibration Concordance Problem (Example: E0102)

Notations

- \(N \) Instruments with true effective area \(A_i, 1 \leq i \leq N \).
 - For each instrument \(i \), we know estimated \(a_i(\approx A_i) \) but not \(A_i \).
- \(M \) Sources with fluxes \(F_j, 1 \leq j \leq M \).
 - For each source \(j \), \(F_j \) is unknown.
- Photon counts \(c_{ij} \): from measuring flux \(F_j \) with instrument \(i \).
- Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing effective areas \(\Rightarrow \) absolute measurements.

1. How to adjust \(A_i \) s.t. \(c_{ij}/A_i \approx F_j \) within statistical uncertainty?
2. How to estimate the systematic error on the \(A_i \)?
1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary
Scientific and Statistical Models

Scientific Model
Multiplicative in original scale and additive on the log scale.

Counts = Exposure × Effective Area × Flux,

\[C_{ij} = T_{ij} A_i F_j, \quad \Leftrightarrow \quad \log C_{ij} = B_i + G_j, \]

where \(\log \text{area} = B_i = \log A_i \), \(\log \text{flux} = G_j = \log F_j \); let \(T_{ij} = 1 \).
Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

\[
\text{Counts} = \text{Exposure} \times \text{Effective Area} \times \text{Flux},
\]

\[
C_{ij} = T_{ij} A_i F_j, \quad \Leftrightarrow \quad \log C_{ij} = B_i + G_j,
\]

where \(\log \text{area} = B_i = \log A_i \), \(\log \text{flux} = G_j = \log F_j \); let \(T_{ij} = 1 \).

Statistical Model

\[
\log \text{counts} \ y_{ij} = \log c_{ij} = \alpha_{ij} + B_i + G_j + e_{ij}, \quad e_{ij} \overset{\text{indep}}{\sim} \mathcal{N}(0, \sigma_{ij}^2);
\]

where \(\alpha_{ij} = -0.5\sigma_{ij}^2 \) to ensure \(\mathbb{E}(c_{ij}) = C_{ij} = A_i F_j \).

- **Known Variances**: \(\sigma_{ij} \) known.
- **Unknown Variances**: \(\sigma_{ij} = \sigma_i \) unknown.
Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

\[
\log \text{ counts} \mid \text{area} \& \text{flux} \& \text{variance} \quad \text{iid} \quad \sim \quad \text{Gaussian distribution}, \\
y_{ij} \mid B_i, G_j, \sigma_i^2 \quad \text{iid} \quad \sim \quad \mathcal{N} \left(-\frac{\sigma_i^2}{2} + B_i + G_j, \sigma_i^2 \right),
\]
Log-Normal Hierarchical Model.

\[
\begin{align*}
\text{log counts} \mid \text{area & flux & variance} & \overset{\text{indep}}{\sim} \text{Gaussian distribution}, \\
\log_{ij} \mid B_i, G_j, \sigma_i^2 & \overset{\text{indep}}{\sim} \mathcal{N}\left(-\frac{\sigma_i^2}{2} + B_i + G_j, \sigma_i^2\right),
\end{align*}
\]

Setting up priors for unknowns.

1. Prior for log-flux \(G_j\): flat (improper, non-informative).
2. Prior for log-area \(B_i\): \(N(b_i, \tau_i^2)\) (conjugate, proper).
3. Unknown variance: Prior for \(\sigma_i^2\): inverse Gamma (conjugate, proper).
Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

\[
\begin{align*}
\text{log counts} & \mid \text{area & flux & variance} \quad \overset{\text{indep}}{\sim} \quad \text{Gaussian distribution,} \\
y_{ij} & \mid B_i, G_j, \sigma_i^2 \quad \overset{\text{indep}}{\sim} \quad \mathcal{N} \left(-\frac{\sigma_i^2}{2} + B_i + G_j, \sigma_i^2 \right),
\end{align*}
\]

Setting up priors for unknowns.

1. Prior for log-flux \(G_j \): flat (improper, non-informative).
2. Prior for log-area \(B_i \): \(\mathcal{N}(b_i, \tau_i^2) \) (conjugate, proper).
3. Unknown variance: Prior for \(\sigma_i^2 \): inverse Gamma (conjugate, proper).
Log-Normal Hierarchical Model.

\[
\begin{align*}
\text{log counts} \mid \text{area} & \& \text{flux} & \& \text{variance} & \sim \text{indep} \quad \text{Gaussian distribution,} \\
y_{ij} \mid B_i, G_j, \sigma_i^2 & \sim \text{indep} \quad \mathcal{N} \left(-\frac{\sigma_i^2}{2} + B_i + G_j, \sigma_i^2 \right), \\
B_i & \sim \text{indep} \quad \mathcal{N}(b_i, \tau_i^2), \\
G_j & \sim \text{flat prior},
\end{align*}
\]

Setting up priors for unknowns.

1. Prior for log-flux \(G_j \): flat (improper, non-informative).
2. Prior for log-area \(B_i \): \(\mathcal{N}(b_i, \tau_i^2) \) (conjugate, proper).
3. Unknown variance: Prior for \(\sigma_i^2 \): inverse Gamma (conjugate, proper).
Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

\[
\begin{align*}
\text{log counts} & \mid \text{area & flux & variance} \quad \sim \quad \text{Gaussian distribution,} \\
y_{ij} & \mid B_i, G_j, \sigma_i^2 \quad \sim \quad \mathcal{N} \left(-\frac{\sigma_i^2}{2} + B_i + G_j, \sigma_i^2 \right), \\
B_i & \sim \quad \mathcal{N}(b_i, \tau_i^2), \quad G_j \sim \quad \text{flat prior},
\end{align*}
\]

Setting up priors for unknowns.

1. Prior for log-flux \(G_j \): flat (improper, non-informative).
2. Prior for log-area \(B_i \): \(\mathcal{N}(b_i, \tau_i^2) \) (conjugate, proper).
3. Unknown variance: Prior for \(\sigma_i^2 \): inverse Gamma (conjugate, proper).
Log-Normal Hierarchical Model.

\[
\begin{align*}
\text{log counts} \mid \text{area} & \& \text{flux} & \& \text{variance} & \sim \text{Gaussian distribution}, \\
y_{ij} \mid B_i, G_j, \sigma^2_i & \sim \mathcal{N}\left(-\frac{\sigma^2_i}{2} + B_i + G_j, \sigma^2_i\right), \\
B_i & \sim \mathcal{N}(b_i, \tau^2_i), \\
G_j & \sim \text{flat prior}, \\
\text{Unknown variance: } \sigma^2_i & \sim \text{Inv-Gamma}(df_g, \beta_g).
\end{align*}
\]

Setting up priors for unknowns.

1. Prior for log-flux \(G_j \): flat (improper, non-informative).
2. Prior for log-area \(B_i \): \(\mathcal{N}(b_i, \tau^2_i) \) (conjugate, proper).
3. Unknown variance: Prior for \(\sigma^2_i \): inverse Gamma (conjugate, proper).
1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary
Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.]
(weighted averages of evidence from 'Prior' and evidence from 'Data').
Hierarchical model \Rightarrow Shrinkage estimators [Example: temperature.]
(weighted averages of evidence from 'Prior' and evidence from 'Data').

$$
\hat{B}_i = W_i b_i + (1 - W_i)(\bar{y}'_i - \bar{G}_i), \quad \hat{G}_j = \bar{y}'_j - \bar{B}_i,
$$

where

$$
W_i = \frac{\tau_i^{-2}}{\tau_i^{-2} + |J_i|\sigma_i^{-2}}
$$

are the precisions of the direct information in the b_i relative to the indirect information for estimating the B_i with

$$
\bar{G}_i = \frac{\sum_{j \in J_i} \hat{G}_j \sigma_i^{-2}}{\sum_{j \in J_i} \sigma_i^{-2}}, \quad \bar{B}_j = \frac{\sum_{i \in I_j} \hat{B}_i \sigma_i^{-2}}{\sum_{i \in I_j} \sigma_i^{-2}}, \quad \bar{y}'_i = \frac{\sum_{j \in J_i} y'_i \sigma_i^{-2}}{\sum_{j \in J_i} \sigma_i^{-2}}, \quad \bar{y}'_j = \frac{\sum_{i \in I_j} y'_i \sigma_i^{-2}}{\sum_{i \in I_j} \sigma_i^{-2}}.
$$
Shrinkage Estimators (A special case)

Assume that $G_j = g_j$ is known, i.e. fluxes known apriori. Then

$$\hat{A}_i = \hat{A}_i = a_i^{W_i} \left[(\tilde{c}_i. \tilde{f}_i^{-1}) e^{\sigma^2_i/2} \right]^{1-W_i},$$

where \tilde{c}_i. and \tilde{f}_i are the geometric means,

$$\tilde{c}_i. = \left[\prod_{j \in J_i} c_{ij} \right]^{1/M_i} \quad \text{and} \quad \tilde{f}_i = \left[\prod_{j \in J_i} f_j \right]^{1/M_i}.$$
1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary
Markov chain Monte Carlo

Construct a biased random walk that explores target dist $P^*(x)$

Markov steps, $x_t \sim T(x_t \leftarrow x_{t-1})$

MCMC gives approximate, correlated samples from $P^*(x)$
Bayesian Computation: MCMC

Increase in density:

Decrease in density:

\[\alpha = 1 \]

M. Dümcke
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.

The joint distribution of the B_i and G_j is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the B_i and G_j is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- Gibbs Sampling: update parameters one-at-a-time.
- Block Gibbs Sampling: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- Hamiltonian Monte Carlo (HMC) – STAN package.
Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

- **Gibbs Sampling**: update parameters one-at-a-time.
- **Block Gibbs Sampling**: update vectors of parameters.
 - The joint distribution of the B_i and G_j is Gaussian.
- **Hamiltonian Monte Carlo (HMC)** – STAN package.
 - Highly correlated parameters, high-dim parameter space.
Bayesian Computation (STAN)

From STAN homepage —

Users specify log density functions in Stan’s probabilistic programming language and get:

- full Bayesian statistical inference with MCMC sampling (NUTS, HMC)
- approximate Bayesian inference with variational inference (ADVI)
- penalized maximum likelihood estimation with optimization (L-BFGS)
Bayesian Computation (STAN Example)

Start by writing a Stan program for the model.

```stan
// saved as 8schools.stan
data {
  int<lower=0> J; // number of schools
  real y[J]; // estimated treatment effects
  real<lower=0> sigma[J]; // s.e. of effect estimates
}
parameters {
  real mu;
  real<lower=0> tau;
  real eta[J];
}
transformed parameters {
  real theta[J];
  for (j in 1:J)
    theta[j] = mu + tau * eta[j];
}
model {
  target += normal_lpdf(eta | 0, 1);
  target += normal_lpdf(y | theta, sigma);
}
```
Assuming we have the 8schools.stan file in our working directory, we can prepare the data and fit the model as the following R code shows.

```r
schools_dat <- list(J = 8,
                    y = c(28, 8, -3, 7, -1, 1, 18, 12),
                    sigma = c(15, 10, 16, 11, 9, 11, 10, 18))

fit <- stan(file = '8schools.stan', data = schools_dat,
            iter = 1000, chains = 4)
```
Bayesian Computation (STAN Example)

\begin{verbatim}
> print(fit, digits = 1)
Inference for Stan model: 8schools.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.

 mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
mu 8.2 0.2 5.4 -1.9 4.8 8.1 11.3 19.3 480 1
tau 6.8 0.3 6.2 0.3 2.5 5.2 9.2 21.7 425 1
eta[1] 0.4 0.0 1.0 -1.5 -0.3 0.4 1.0 2.2 2000 1
eta[2] 0.0 0.0 0.8 -1.7 -0.6 0.0 0.5 1.7 2000 1
eta[3] -0.2 0.0 1.0 -2.1 -0.9 -0.2 0.4 1.7 2000 1
eta[4] -0.1 0.0 0.9 -1.8 -0.7 -0.1 0.5 1.7 2000 1
eta[5] -0.4 0.0 0.9 -2.1 -1.0 -0.4 0.2 1.4 2000 1
eta[6] -0.2 0.0 0.9 -1.9 -0.8 -0.2 0.4 1.5 1731 1
eta[7] 0.3 0.0 0.9 -1.4 -0.2 0.4 0.9 2.0 1507 1
eta[8] 0.0 0.0 0.9 -1.9 -0.6 0.0 0.7 1.8 1988 1
theta[1] 11.5 0.3 8.8 -2.4 5.9 10.1 15.6 32.9 977 1
theta[2] 7.8 0.1 6.2 -4.7 4.1 7.9 11.6 20.3 2000 1
theta[3] 6.1 0.2 7.7 -11.2 2.1 6.4 10.5 20.2 2000 1
theta[4] 7.6 0.1 6.5 -4.9 3.8 7.8 11.4 21.3 2000 1
theta[5] 5.0 0.1 6.6 -9.3 1.2 5.6 9.3 16.7 2000 1
theta[6] 6.2 0.2 6.7 -8.2 2.2 6.5 10.5 18.5 2000 1
theta[7] 10.8 0.2 7.0 -1.3 6.1 10.1 15.1 26.8 2000 1
theta[8] 8.7 0.2 8.2 -7.3 3.9 8.4 12.8 27.2 1446 1
lp__ -39.5 0.1 2.6 -45.1 -41.2 -39.4 -37.7 -35.1 590 1

Samples were drawn using NUTS(diag_e) at Fri May 5 10:41:43 2017.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
\end{verbatim}
Numerical Results
Numerical Results (E0102)

Ne (STAN)

- RGS1
- MOS1
- MOS2
- pn
- ACIS-S3
- ACIS-I3
- HETG
- XIS0
- XIS1
- XIS2
- XIS3
- XRT-WT
- XRT-PC

O2 (STAN)

- RGS1
- MOS1
- MOS2
- pn
- ACIS-S3
- ACIS-I3
- HETG
- XIS0
- XIS1
- XIS2
- XIS3
- XRT-WT
- XRT-PC
Summary

Statistics

1. *Multiplicative* mean modeling:

 log-Normal hierarchical model.
Statistics

1. *Multiplicative* mean modeling:

 log-Normal hierarchical model.

2. Shrinkage estimators.
Summary

Statistics

1. *Multiplicative* mean modeling:

 log-Normal hierarchical model.

2. Shrinkage estimators.

3. Bayesian computation: MCMC & STAN.
Summary

Statistics

1. *Multiplicative* mean modeling:

 log-Normal hierarchical model.

2. Shrinkage estimators.

3. Bayesian computation: MCMC & STAN.

4. The potential pitfalls of assuming 'known' variances.
Summary

Statistics

1. *Multiplicative* mean modeling:

 log-Normal hierarchical model.

2. Shrinkage estimators.

3. Bayesian computation: MCMC & STAN.

4. The potential pitfalls of assuming 'known' variances.

Astronomy

1. Adjustments of effective areas of each instrument.
Summary

Statistics
1. *Multiplicative* mean modeling:

 \[
 \text{log-Normal hierarchical model.}
 \]

2. Shrinkage estimators.

3. Bayesian computation: MCMC & STAN.

4. The potential pitfalls of assuming 'known' variances.

Astronomy
1. Adjustments of effective areas of each instrument.

2. Calibration concordance achieved.
Acknowledgement

Xufei Wang (Harvard), Xiao-Li Meng (Harvard), David van Dyk (ICL), Herman Marshall (MIT) & Vinay Kashyap (cfA)
Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.

- The “pileup”: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.

- **The “pileup”**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.

- **Three data sets**: the hard, medium, and soft energy bands.
Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.
- **The “pileup”**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.
- **Three data sets**: the hard, medium, and soft energy bands.
- **Three detectors**: MOS1, MOS2 and pn.
Numerical Results (XCAL)

- **XCAL data**: Bright active galactic nuclei from the XMM-Newton cross-calibration sample.

- **The “pileup”**: Image data are clipped to eliminate the regions affected by pileup, determined using epatplot.

- **Three data sets**: the hard, medium, and soft energy bands.

- **Three detectors**: MOS1, MOS2 and pn.

- **Sources**: 94 (hard band), 103 (medium band), and 108 (soft band).
Numerical Results (XCAL)