Fitting Narrow Emission Lines in X-ray Spectra

Taeyoung Park

Department of Statistics, Harvard University

October 25, 2005

Taeyoung Park <tpark@stat.harvard.edu> Fitting Narrow Emission Lines in X-ray Spectra

イロト イポト イヨト イヨト

イロト イポト イヨト イヨト

X-ray Spectrum

- Quasars are far distant and very luminous objects.
- They emit X-ray luminosity, and the emission of photons with energies is represented by a spectrum.
- The spectrum is characterized by two main components: a continuum term and emission lines.
- The continuum describes a general shape of the spectrum.
- The emission lines are local features in the spectrum and represent extra emission of photons in a narrow band of energy.

イロト 不得 トイヨト イヨト

Fluorescent Fe-K-alpha Emission Line

- The Fe-K-alpha emission line is the only emission feature identified so far.
- The emission line of the quasar X-ray spectrum is important in the investigation of the state of plasma.
- This line is thought to come directly from illuminated cold accretion flow as a fluorescent process.
- The location of the line indicates the ionization state of iron in the emitting plasma.
- The width of the line tells us the velocity of the plasma.

Quasar PG 1634+706

- PG 1634+706 is a redshift z=1.334 radio quiet and optically bright quasar.
- This source was observed with *Chandra* as a calibration target six times on March 23 and 24, 2000.
- The Fe-K-alpha line has been observed in the quasar rest frame of near 6.4 keV, which corresponds to 2.74 keV in the observed frame of PG 1634+706.

Fitting Narrow Emission Lines in X-ray Spectra

・ロト ・四ト ・ヨト ・ヨト

Basic Source Model

- The spectrum is a finite mixture of a continuum term and emission lines.
- We directly model the arrival of photons as an inhomogenous Poisson process, so the expected counts in energy bin *j* can be modeled as

$$\Lambda_j(\theta) = \Delta_j f(\theta^C, E_j) + \sum_{k=1}^K \lambda_k \pi_j(\mu_k, \nu_k).$$

- Δ_j and E_j : the width and mean energy of bin *j*.
- $f(\theta^{C}, E_{j})$: the expected counts due to the continuum.
- $-\lambda_k$: the expected counts due to the emission line.
- $-\pi(\mu_k,\nu_k)$: the proportion of a line that falls into bin *j*.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Data Distortion Model

- Data are subject to a number of processes that significantly degrade the source counts:
- absorption: photons are absorbed by material in the source or between the source and the observer,
- effective area: stochastic censoring,
- blurring: stochastic redistribution, and
- background contamination: photons are contaminated by the presence of background sources.
- Thus we modify the expected photon counts via

 $\Xi_{I}(\theta) = \sum_{j \in \mathcal{J}} M_{ij} \Lambda_{j}(\theta) d_{j} u(\theta^{A}, E_{j}) + \theta_{I}^{B}.$

Taeyoung Park <tpark@stat.harvard.edu > Fitting Narrow Emission Lines in X-ray Spectra

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Hierarchical Structure of Missing Data

- Missing data
 - Y_{mis1} : variables that describe blurring, absorption, and background contamination.
 - $Y_{\rm mis2}$: a mixture component indicator variable that indicates which photons originated from the line and which from the continuum.
- Parameters
 - ψ : parameters for the continuum, absorption, and background contamination, i.e., $\psi = (\theta^{C}, \theta^{A}, \theta^{B})$.
 - μ : a parameter for the line location.
 - ν : a parameter for the line width.

イロト 不得 トイラト イラト 二日

Difficulty with Identifying Narrow Emission Lines

- The standard missing-data algorithm fits the finite mixture problem by iteratively attributing a subset of observed photons to the line and using the mean and variance to update the center and width of the line.
- When a delta function is used to model an emission line, however, the standard algorithm breaks down: The line location does not move from iteration to iteration.
- We suggest fitting the line location without missing data (the mixture indicator).
- This difficulty also persists when the location and width of a Gaussian emission line is simultaneously fitted.

イロト イポト イヨト イヨト

PMG Sampler with a Delta Function Line

• Our goal is to find a sampler that maintains the transition kernel of an ordinary Gibbs sampler but has quicker convergence than that.

イロト イポト イヨト イヨト

PMG Sampler with a Gaussian Line

 Notice that the resulting sampler is not a blocked version of the ordinary Gibbs sampler!

イロト イポト イヨト イヨト

Results of the EM-type Algorithm

Table: Posterior Modes for μ Identified with the EM-type Algorithm.

line profile	obs-id	mode (keV)	converged starting values (keV)	log posterior
Delta function	47	2.885	0.5 - 6.0	•
	62	2.845	0.5 - 6.0	•
	69	1.805	0.5 - 6.0	•
	70	2.835	0.5 - 6.0	•
	71	2.715	0.5 - 3.7,3.9 - 4.6, and 4.9 - 5.8	1355.31
		5.605	3.8, 4.7 – 4.8, and 5.9 –6.0	1354.90
	1269	2.905	0.5 - 6.0	•
	47	2.765	0.5 - 6.0	•
Gaussian function	62	2.595	0.5 - 6.0	
	69	2.195	0.5 - 6.0	•
	70	2.705	0.5 - 6.0	•
	71	2.605	0.5 - 6.0	•
	1269	2.575	0.5 - 6.0	•

Posterior Distribution of the Delta Function Line

Taeyoung Park <tpark@stat.harvard.edu>

Fitting Narrow Emission Lines in X-ray Spectra

Partially Marginalized Gibbs Samplers Combining Observed Information

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

★ E > ★ E >

2

Posterior Distribution of the Delta Function Line

Summary Statistics for the Delta Function Line

observed data set	mode (keV)	HPD region for μ	posterior probability	odds ratio
obs-id 47	2.885	(2.67, 3.07)	83.74%	•
	0.545	(0.50, 1.99)	35.21%	1.74
obs-id 62	2.305	(2.06, 2.43)	9.28%	0.33
	2.845	(2.45, 2.99)	23.78%	•
	3.985	(3.36, 4.10)	15.65%	0.59
	0.625	(0.50, 1.21)	23.64%	•
obs-id 69	1.805	(1.57, 1.97)	39.51%	•
	2.535	(2.20, 2.82)	13.33%	•
	3.835	(3.73, 3.98)	7.10%	•
	0.605	(0.50, 0.99)	13.14%	0.15
obs-id 70	2.845	(2.51, 3.19)	50.82%	•
	5.995	(5.73, 6.00)	14.36%	0.16
obs-id 71	0.665	(0.50, 1.19)	15.41%	0.25
	2.135	(2.02, 2.47)	7.23%	0.11
	2.715	(2.50, 3.07)	41.78%	•
	5.595	(5.36, 5.72)	21.99%	0.39
obs-id 1269	0.505	(0.50, 1.21)	18.25%	0.12
	2.905	(2.75, 3.12)	65.11%	

・ロト・(部・・国・・国・) 通

Summary Statistics for the Delta Function Line

observed data set	parameter	mean	std. dev.	2.5%	median	97.5%
	λ	34.717	17.668	3.346	34.033	68.927
obs-id 47	α^{C}	3.4e-4	2.7e-5	3.0e-4	3.4e-4	4.0e-4
	β^{C}	1.754	0.093	1.577	1.752	1.942
	λ	19.764	23.372	0.610	13.590	92.996
obs-id 62	α^{C}	3.6e-4	2.9e-5	3.0e-4	3.6e-4	4.2e-4
	β^{C}	1.769	0.097	1.579	1.769	1.960
	λ	27.354	29.737	1.018	20.809	122.08
obs-id 69	α^{C}	3.5e-4	3.0e-5	2.9e-4	3.4e-4	4.1e-4
	β^{C}	1.741	0.098	1.552	1.741	1.935
	λ	24.627	22.578	1.242	20.342	88.06
obs-id 70	α^{C}	3.2e-4	2.6e-5	2.7e-4	3.2e-4	3.7e-4
	β^{C}	1.686	0.097	1.498	1.686	1.879
	λ	23.303	19.139	0.993	20.187	65.481
obs-id 71	α^{C}	4.0e-4	3.4e-5	3.3e-4	3.9e-4	4.7e-4
	β^{C}	1.826	0.103	1.629	1.825	2.029
	λ	87.373	214.336	2.358	32.569	782.539
obs-id 1269	α^{C}	2.7e-4	1.9e-5	2.4e-4	2.7e-4	3.1e-4
	β^{C}	1.985	0.084	1.821	1.985	2.150

Taeyoung Park <tpark@stat.harvard.edu>

Fitting Narrow Emission Lines in X-ray Spectra

Partially Marginalized Gibbs Samplers Combining Observed Information

Posterior Distribution of the Gaussian Line

Taeyoung Park <tpark@stat.harvard.edu>

Fitting Narrow Emission Lines in X-ray Spectra

Partially Marginalized Gibbs Samplers Combining Observed Information

A B +
A B +
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

★ E > ★ E >

2

Posterior Distribution of the Gaussian Line

Joint Posterior Distribution of the Gaussian Line

Taeyoung Park <tpark@stat.harvard.edu>

Fitting Narrow Emission Lines in X-ray Spectra

Partially Marginalized Gibbs Samplers Combining Observed Information

A 3 5 A 3

Joint Posterior Distribution of the Gaussian Line

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary Statistics for the Gaussian Line

observed data set	parameter	mean	std. dev.	2.5%	median	97.5%
	μ	2.733	0.258	2.275	2.745	3.125
	ν	0.197	0.112	0.078	0.168	0.504
obs-id 47	λ	89.401	38.678	18.978	87.139	168.79
	α^{C}	3.7e-4	2.3e-5	3.4e-4	3.7e-4	4.3e-4
	β^{C}	1.908	0.087	1.755	1.901	2.095
	μ	2.675	0.813	0.915	2.715	4.075
	ν	0.276	0.158	0.096	0.230	0.723
obs-id 62	λ	35.146	26.774	1.331	29.792	101.544
	α^{C}	3.8e-4	2.8e-5	3.4e-4	3.8e-4	4.4e-4
	β^{C}	1.873	0.097	1.708	1.866	2.088
	μ	2.456	0.613	1.245	2.365	3.815
obs-id 69	ν	0.281	0.171	0.096	0.230	0.774
	λ	59.786	40.748	3.589	53.367	155.065
	α^{C}	3.7e-4	2.7e-5	3.3e-4	3.7e-4	4.3e-4
	β^{C}	1.864	0.096	1.704	1.855	2.077

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary Statistics for the Gaussian Line

observed data set	parameter	mean	std. dev.	2.5%	median	97.5%
-	μ	2.577	0.528	1.245	2.625	3.485
	ν	0.215	0.128	0.078	0.176	0.578
obs-id 70	λ	59.261	34.128	3.448	57.652	129.735
	α^{C}	3.5e-4	2.1e-5	3.2e-4	3.5e-4	4.0e-4
	β^{C}	1.842	0.083	1.697	1.836	2.021
	μ	2.518	0.610	0.985	2.545	3.835
	ν	0.245	0.146	0.090	0.203	0.656
obs-id 71	λ	48.629	33.149	2.522	44.211	123.596
	α^{C}	4.1e-4	3.5e-5	3.5e-4	4.1e-4	4.9e-4
	βC	1.913	0.109	1.711	1.909	2.136
obs-id 1269	μ	2.445	0.615	1.095	2.465	3.825
	ν	0.255	0.146	0.090	0.221	0.656
	λ	55.982	42.325	2.085	47.484	155.316
	α^{C}	2.8e-4	1.9e-5	2.5e-4	2.8e-4	3.2e-4
	β^{C}	2.032	0.088	1.869	2.030	2.214

イロト イポト イヨト イヨト

Combining All Data Sets

- The six observations of PG 1634+706 were independently observed.
- Under a flat prior distribution, the posterior distribution of the delta function line location given all six data sets is given by

$$p(\mu|\mathbf{y}) \propto \int \cdots \int \prod_{i=1}^{6} L(\mu, \psi_i|\mathbf{y}_i) d\psi_1 \cdots d\psi_6$$
$$= \prod_{i=1}^{6} \int L(\mu, \psi_i|\mathbf{y}_i) d\psi_i$$
$$= \prod_{i=1}^{6} p(\mu|\mathbf{y}_i).$$

Partially Marginalized Gibbs Samplers Combining Observed Information

Combining All Data Sets

Taeyoung Park <tpark@stat.harvard.edu>

Fitting Narrow Emission Lines in X-ray Spectra

2

イロト イポト イヨト イヨト

Results of Combining All Data Sets

- The posterior mode of the delta function line location given all data sets is given by 2.865 keV.
- The posterior mean of the Gaussian line location given all data sets is given by 2.667 keV.
- These observed lines are redshifted into 6.69 keV and 6.22 keV in the quasar rest frame, respectively.
- The Fe-K-alpha emission line at 6.69 keV may imply that the iron at the quasar PG 1634+706 was in the ionization state when the quasar is observed.
- On the other hand, if a Gaussian line profile is more appropriate, the Fe-K-alpha line at 6.22 keV seems to indicate neutral iron.