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Stellar Corona

Definition

Corona

The outermost layer of a
stellar atmosphere.

⇐ Sun’s corona during a total
solar eclipse. (08/11/1999)
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Differential Emission Measure and Elemental Abundances

Definition

Differential Emission Measure (DEM) (µ) : The distribution of the
amount emission at different temperatures from a stellar corona.

Elemental Abundances (γk) : The fractions of each element
compared to hydrogen relative to solar abundances.

What can we learn?

DEM summarizes the temperature structure of corona.

It provides how the corona is cooled, which then feeds back into the
physical structure of the corona.

The elemental composition of a star is an important determinant of
its physical structure, and a tracer of its evolutionary state.
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The Solar DEM in an Active Region
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The Solar DEM in an Quiet Region
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Total Flux : We wish we could observe this.

Total Flux

Source model energy spectrum
- Ideal data.

The mixture of the continuum
and emission lines.
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Stochastic Censoring

Effective Area

A photon has a certain energy
dependent probability of being
recorded by the detector.

This relative efficiency is called
effective area.
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Measurement Errors - Blurring

Blurring

Mirrors do not focus perfectly.

The line-spread function
characterizes the probability
distribution of a photon’s
recorded energy location
relative to its true energy.

The shape of the distribution
are approximated by
t-distribution or Gaussian
distribution.
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Background Contamination

Background Contamination

Photon counts come from
other celestial objects that are
near the line of sight of the
the source of interest.
(background contamination)
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Differential Emission Measure and Elemental Abundances

Emission line intensity originating from element k:

λk,L
l = A

∫
γkG k,L

l (T )DEM(T )d log T

≈ A(∆ log T )
M∑
i=1

γkG
k,L
lt µt , or equivalently

λk,L = A(∆ log T )γkG
k,Lµ ∝ γkG

k,Lµ,

We are interested in γk and µ.

Gk,L is known. (What is Gk,L?)
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Emissivity Matrix

They are known from ATOMDB v1.3.

There are 28 such matrices.

Big matrix (for example, for chandra data set, 2,160×64)

Conditional distribution of energy at a given temperature.

Each column corresponds to the emissivity at a given
temperature.

In continuum emissivity matrix, each row corresponds to a
energy bin.

In line emissivity matrix, each row corresponds to a line
location (prone to error).
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Differential Emission Measure and Elemental Abundances

(Let’s just say...) the expected photon counts at energy bin j , λj

λ = (λ1, . . . , λJ)
′ =

K∑
k=1

{λC ,k + binning(λL,k)}

∝

(
K∑

k=1

γk{GC ,k + binning(GL,k)}

)
µ,

where K is the total number of elements i.e. K = 14.
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Spectral Model

The observed counts at channel i with background contamination
follow independent Poisson variables with intensity

ξi =
J∑

j=1

Mijλjdj + λB
i , i = 1, . . . , I ,

ξ ∝ MD

(
K∑

k=1

γk{GC ,k + binning(GL,k)}

)
µ + λB .

dj : The probability that an X-ray is not refracted off the
detector bin j . D = diag(dj).

Mij : The probability that a photon that arrives with energy
corresponding to bin j is recorded in detector channel i .

Hosung Kang MCMC applications in Bioinformatics and Astrophysics



Bayesian DEM Reconstruction

Scientific Background
Data Collection and Instrumentation
Model Formulation
Bayesian Deconvolution Methods
Results and Model Diagnostics

Conditional Augmentation

We renormalize Gtotal to reduce the counts attributed to the
censored photons.

Gtotal =

(
K∑

k=1

γk{GC ,k + binning(GL,k)}

)
,

norm = max
t=1,...,M


J∑

j=1

Gtotalj ,t

 ,G? =
1

norm
Gtotal
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Conditional Augmentation - Toy Example

1 13
14
19

 =

0.10 0.15
0.20 0.10
0.10 0.25

 (
??
??

)

2 13
14
19

 = 0.5

0.20 0.30
0.40 0.20
0.20 0.50

 (
??
??

)
Solve this via EM.
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Conditional Augmentation - Toy Example

1 13
14
19

 =

0.10 0.15
0.20 0.10
0.10 0.25

 (
40
60

)

2 13
14
19

 = 0.5

0.20 0.30
0.40 0.20
0.20 0.50

 (
40
60

)
Current Guess? µ1 = 40, µ2 = 60
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Conditional Augmentation - Toy Example

1 13
14
19

 =

0.10 0.15
0.20 0.10
0.10 0.25

(40
60

)

2 13
14
19

 =

0.20 0.30
0.40 0.20
0.20 0.50

(20
30

)

Multinomial Split!
13
14
19
46

 =


4 + 9
8 + 16
4 + 15
16 + 30


Restore censored counts:

1 µnew
1 = 16 + (1− 0.4)40,

µnew
2 = 30 + (1− 0.5)60.

2 0.5µnew
1 = 16 + (1− 0.8)20,

0.5µnew
2 = 30 + (1− 1.0)30.
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Conditional Augmentation - Toy Example

1 13
14
19

 =

0.10 0.15
0.20 0.10
0.10 0.25

(40
60

)

2 13
14
19

 =

0.20 0.30
0.40 0.20
0.20 0.50

(20
30

)

New estimates: µ1 = 40, µ2 = 60.

Proportion of missing data :

1 24/40 = 60%, 30/60 = 50%.
2 4/20 = 20%, 0/30 = 0%
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Hierarchical Missing Data Structuring

Ut : Ideal photon count
in temperature bin t

↓ Stochastic Censoring

U−
t : Stochastically

censored photon count at
temperature bin t

Vk : Count of photons
originating from element
k
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Hierarchical Missing Data Structuring

Zj : Ideal bin count at
energy bin j

↓ Stochastic Censoring

Z−
j : Stochastically

censored energy bin
count at energy bin j

↓ Line Spread Function

Yi : Source count at
energy channel i
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Hierarchical Missing Data Structuring

p(γ,λ, β,V,U,U−,Z,Z−,Y|Yobs) ∝
p(γ,λ, β)p(V|γ,λ)p(U|γ,λ)p(U−|U)p(Z|U−)

×p(Z−|Z)p(Y|Z−)p(Yobs|Y, β)

For example,

Z−
j |Zj , θ ∼ Binomial(Zj , dj).

Z|U−, θ ∼
∑

t

Multinomial

(
U−

t ,
G?
•t∑

t G?
•t

)
,

where G?
•t is the t-th column of G?.
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Hierarchical Missing Data Structuring
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Missing Data Sampling Conditional on Parameters

1 Independently separate the background counts from the observed counts,

Y B
i |Y obs

i , θ ∼ Binomial(Y obs
i , λB

i /ξ(θ)), i = 1, . . . I ,

2 Restore the blurred photons,

Z−|Y, θ ∼
IX

i=1

Multinomial

 
Yi ,

(M1idiλi , . . . , MJidJλJ)
′P

j Mjidjλj

!

3 Independently restore the absorbed counts due to the effective area,

Zj |Z−
j , θ ∼ Z−

j + Poisson((1 − dj)λj), j = 1, . . . J.

4 Restore U− given Z, θ.

U−|Z, θ ∼
JX

j=1

Multinomial

 
Zj ,

G?
j• · µP
G?

j• · µ

!
,

where G?
j• is a j-th row vector.
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Multi-Scale Smoothing

The Poisson intensity of a “parent” node is a sum of the
Poisson intensity of the two “child” nodes.

The smoothness of the intensities is controlled by the splitting
factors {ρr ,k}.
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Atomic Data Errors - Emission Line Location Correction

1 Impute how many photon counts out of
all the observed counts in each energy
channel are attributed to the emission
line of interest conditional on the
current parameters. (I.e. Histogram)

2 Sample photon energies from a
truncated normal (or t-) distribution.

3 Fit the new center of the emission line
by treating the imputed photon energies
as if observed.
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Simulation Results
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Simulation Results

Element Input Value Mean 95% Interval

C 0.8 0.77 (0.70, 0.84)
Si 0.8 0.80 (0.74, 0.87)
N 2 2.00 (1.92, 2.10)
S 0.8 0.93 (0.75, 1.11)
O 0.5 0.50 (0.48, 0.52)
Ar 2.8 2.90 (2.68, 3.12)
Ne 5 5.06 (4.90, 5.22)
Ca 3.8 3.82 (3.45, 4.23)
Mg 3 2.99 (2.86, 3.12)
Fe 2 2.01 (1.95, 2.08)
Al 2.5 2.37 (1.57, 3.17)
Ni 2 2.03 (1.82, 2.26)
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Capella Data - Chandra’s HRC-S with LETGS
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Capella Data - Chandra’s HRC-S with LETGS

Element Mode Mean 95% Interval

C 0.155 0.149 (0.097, 0.205)
Si 0.266 0.255 (0.227, 0.286)
N 0.122 0.118 (0.110, 0.126)
S 0.300 0.293 (0.273, 0.315)
O 0.542 0.533 (0.492, 0.577)
Ar 0.235 0.251 (0.025, 0.555)
Ne 0.599 0.591 (0.540, 0.644)
Ca 0.362 0.356 (0.206, 0.517)
Mg 0.177 0.168 (0.085, 0.256)
Fe 0.303 0.295 (0.190, 0.405)
Al 0.428 0.422 (0.403, 0.442)
Ni 0.707 0.688 (0.616, 0.767)
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Model Diagnostics - Atomic Error Correction
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Model Diagnostics - Atomic Error Correction
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Emission Line Position Shift Due to Atomic Error
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Model Diagnostics - Posterior Predictive Intervals

Hosung Kang MCMC applications in Bioinformatics and Astrophysics


