Estimate Strong Lens Time Delay multiple filters, multiple quasars

Zhirui Hu
collaborating with Hyungsuk Tak, Kaisey Mandel, David A. van Dyk, Vinay L. Kashyap, Xiao-Li Meng, Aneta Siemiginowska

January 24, 2017

Model: Intrinsic variation

Intrinsic variation of light source for multiple filters $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ generated by
correlated Ornstein-Uhlenbeck process (O-U process):

$$
\begin{align*}
d \mathbf{X}(\mathbf{t}) & =-\frac{1}{\tau}(\mathbf{X}(\mathbf{t})-\boldsymbol{\mu}) \mathbf{d} \mathbf{t}+\sigma \mathbf{d} \mathbf{B}(\mathbf{t}) \tag{1}\\
d B_{i}(t) B_{j}(t) & =\rho_{i j} d t
\end{align*}
$$

Model: Strong- and Micro- lensing

For each filter j, a pair of latent light curves $X_{j}(t)$ and $Y_{j}(t)$ are offset by δ because of strong lensing:

$$
Y_{j}(t)=X_{j}(t-\delta)+\beta_{0}
$$

Microlensing trends at different wavelengths modeled by low-order polynomial:

$$
\begin{array}{r}
\tilde{X}_{j}(t)=X_{j}(t)+p_{m, \boldsymbol{\beta}_{1, j}}(t) \\
\tilde{Y}_{j}(t)=X_{j}(t-\delta)+p_{m, \boldsymbol{\beta}_{2, j}}(t-\delta) \tag{2}
\end{array}
$$

Observed data

Each pair of light curves $\left(\tilde{X}_{j}(t), \tilde{Y}_{j}(t)\right)$ is sampled at irregular time intervals
$\left(t_{j, 1}, t_{j, 2}, \ldots, t_{j, n_{i}}\right)$.
With some measure errors, observed light curves are distributed as:

$$
\begin{align*}
& x\left(t_{j, i}\right) \sim N\left(\tilde{X}_{j}\left(t_{j, i}\right), \xi_{j}^{2}\left(t_{j, i}\right)\right) \\
& y\left(t_{j, i}\right) \sim N\left(\tilde{Y}_{j}\left(t_{j, i}\right), \eta_{j}^{2}\left(t_{j, i}\right)\right), i=1,2, \ldots n_{j} \tag{3}
\end{align*}
$$

$\xi_{j}\left(t_{j, i}\right)$ and $\eta_{j}\left(t_{j, i}\right)$ are given.

Combined Time Sequence

For simplicity, we drop the subscript j for each filter in this slide.
Let $\mathcal{T}=\left\{\left(t_{1}, t_{2}, \ldots, t_{2 n}\right), t_{1} \leq t_{2} \ldots \leq t_{2 n}\right\}$ be the ordered and combined time sequence of $\mathcal{T}_{1}=\left\{t_{i}\right\}$ and $\mathcal{T}_{2}=\left\{t_{i}-\delta\right\},\left\{z\left(t_{i}\right)\right\}$ be the combined observed sequence of $\left\{x\left(t_{i}\right)\right\}$ and $\left\{y\left(t_{i}\right)\right\}$, and $\left\{Z\left(t_{i}\right)\right\}$ be the combined latent light curve:

$$
\begin{gathered}
z\left(t_{i}\right)= \begin{cases}x\left(t_{i}\right) & t_{i} \in \mathcal{T}_{1} \\
y\left(t_{i}+\delta\right) & t_{i} \in \mathcal{T}_{2}\end{cases} \\
Z\left(t_{i}\right)= \begin{cases}\tilde{X}\left(t_{i}\right)=X\left(t_{i}\right)+p_{m, \beta_{1}}\left(t_{i}\right) & t_{i} \in \mathcal{T}_{1} \\
\tilde{Y}\left(t_{i}+\delta\right)=X\left(t_{i}\right)+p_{m, \beta_{2}}\left(t_{i}\right) & t_{i} \in \mathcal{T}_{2}\end{cases}
\end{gathered}
$$

Likelihood: combine multiple filters

Let $\left\{z\left(t_{i}\right)\right\}$ be the combined observed sequences of all filters, $\left\{\mathbf{Z}\left(t_{i}\right)\right\}$ is the latent light curves, which is k -dim.
$z\left(t_{i}\right) \mid \mathbf{Z}\left(t_{i}\right) \sim N\left(\mathbf{Z}_{j}\left(t_{i}\right), \eta_{j}^{2}\left(t_{i}\right)\right)$, filter j is observed at t_{i}
$z_{j}\left(t_{i}\right)=X_{j}\left(t_{i}\right)+p_{m, \beta_{j 1}}\left(t_{i}\right) I\left(t_{i} \in \mathcal{T}_{j 1}\right)+p_{m, \beta_{j 2}}\left(t_{i}\right) I\left(t_{i} \in \mathcal{T}_{j 2}\right)$,
(4)
$\mathbf{X}(t) \mid \mathbf{X}(s) \sim \operatorname{MVN}\left(\mu+e^{-(t-s) / \tau}(\mathbf{X}(s)-\boldsymbol{\mu}), Q(t-s)\right)$
where $Q_{i j}(t-s)=\frac{\sigma_{i} i_{i} \rho_{i j} \tau_{j} \tau_{j}}{\tau_{i}+\tau_{j}}\left(1-e^{-\left(1 / \tau_{i}+1 / \tau_{j}\right)(t-s)}\right)$.
For identification, we assumed $\mu_{1}=0$ and absorbed the mean into the constant term in the polynomial.

Prior for Microlensing

Microlensing is partially coherent for multiple bands and indepndent for (un-)shift curve:

$$
\begin{aligned}
& \boldsymbol{\beta}_{j 1} \sim N\left(\boldsymbol{\beta}_{1}, \boldsymbol{\sigma}^{2}\right), \boldsymbol{\beta}_{j 2} \sim N\left(\boldsymbol{\beta}_{2}, \boldsymbol{\sigma}^{2}\right), j \in\{1 . . k\} \\
& \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \sim N\left(\boldsymbol{\mu}, \boldsymbol{\sigma}^{2} / \boldsymbol{\kappa}\right) \\
& p(\boldsymbol{\mu}) \propto 1, p\left(\sigma_{m}^{2}\right) \propto 1 / \sigma_{m}^{2}, p\left(\kappa_{m}\right) \sim \operatorname{Gam}(1,1) \forall m
\end{aligned}
$$

Prior for parameters in OU process

$$
\begin{array}{r}
\sigma_{j}^{2} \sim \operatorname{IG}\left(\alpha_{\sigma}, \beta_{\sigma}\right), \tau_{j} \sim \operatorname{IG}\left(\alpha_{\tau}, \beta_{\tau}\right) \tag{7}\\
\alpha_{\sigma}, \alpha_{\tau}, \beta_{\tau} \sim \operatorname{Gamma}(1,1) \\
\beta_{\sigma} \sim \operatorname{Gamma}\left(10^{-6}, 1\right)
\end{array}
$$

And $\rho_{i j} \sim \operatorname{Uniform}(0,1)$

Kalman Filter to sample the latent light curves $(\{\mathbf{Z}(t)\})$ given other parameters.

Sample from conditional distribution of β s given $\mathbf{Z}(t)$ which is Gaussian.

Metropolis-Hastings within Gibbs sampling to update $\tau, \sigma, \rho, \delta$.

Simulations

Figure: Simulation Data: 5 years, Season $=5$ months, Cadence $=2$ days, $\mathrm{n} \approx 90$ for each band.

Simulation Result

(a) Posterior of δ

(b) Fitted Data

Real Data

Doubly-lensed Q0957+561 quasar r-and gbands data. $132 \times 2=264$ samples from r band and $142 \times 2=284$ from g - band in ~ 5 years.

(a) shifted

(b) un-shifted

Result: Profile log-likelihood

Figure: Individually and combined profile log -likelihood. For combined model, either independent or correlated O-U processes.

Result: Full Bayesian Model

Figure: Posterior distribution of δ.

Result: Full Bayesian Model

Figure: Posterior mean of intrinsic brightness by O-U process (remove microlensing with $m=3$).

Result: Full Bayesian Model

Figure: Posterior mean of latent light curve (including microlensing with $m=3$).

Future work

With additional flux errors, model the error by heavier tail distribution (Student's t). More computational cost.
Different resolution of OU process for intra-night and inter-night variation of light source

Model Microlensing as hierarchical Gaussian Process or Choose other basis function

Combine different quasars to estimate Hubble constant.

