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Background

Statistics: internet-based big data & traditional survey data

Astronomy: SED (spectral energy distribution) problem where
OIR photometry must be fit simultaneously with X-ray
spectra. Or in calibration studies, when measurements of the
same quantity from different sources must be combined
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Motivating Example - XRCF Correction Factor

curve fitting from three different sources, with different
quantity and quality

the true curve has jumps

energy ea1346 err1346

0.40 411.64 0.10
0.50 1044.55 0.02
0.60 1030.93 0.01
· · · · · · · · ·

10.30 17.98 0.04
10.40 13.11 0.04
10.50 10.40 0.05

X Ray energy A eff A err

0.93 760.00 7.16
4.51 362.43 5.69
5.41 307.15 2.70
8.03 76.33 3.52

X Ray energy A eff A err

2.17 352.45 5.70
2.98 410.27 10.07
3.44 402.52 8.03
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XRCF Correction Factor

Standard Errors are not consistent from one dataset to another...
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The fear of imbalanced dataset

if datasets are of same quality, then larger datasets should
dominate small datasets

discount large datasets ⇔ large datasets has “worse” quality

two possibilities (paradigms) for “worse” quality:
the large dataset is biased (e.g. internet-based data)
the large dataset has strong correlation (e.g. multi-level data
or clustered data)

both the two above could be loosely interpreted as “bias”, but
subtle difference in repeated sampling interpretation

unknown systematic bias could be thought of as correlation in
samples

for XRCF Correction Factor, it is hard to believe physical
instrument has systematic bias, so the correlation perspective
is more suitable here
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Vague intuitions about the model

estimates in each dataset are strongly correlated with ρ ∝ L

between dataset independence

hierarchical Gaussian process with random shift from common
mean curve

the standard error is conditional on the random shift, thus
unconditionally the error is much larger compare to the true
mean curve

true curve has jumps ⇒ wavelet transformation
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the minimum non-trivial example

the jumps in the curve are orthogonal to the problem of sizing
issue of multiple datasets

assume no jumps for now to focus on the primary problem

once the primary problem is solve, we can add back jumps by
working on the wavelet transformed domain
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mathematical model

Gaussian Process seems to be a nature choice for correlated
error

Multiple datasets ⇒ hierarchical Bayesian model

Naturally incorporates SE as conditional standard deviation
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Hierarchical Gaussian Process

Denote true curve as m : x 7→ m(x)

Each measurement instrument i has its own curve
fi |m ∼ GP(m, ki ), where ki : (x , x ′) 7→ ki (x , x

′) is the kernel
function

Observations by each instrument has error conditional on

instrument’s inherited curve: yij |fi
iid∼ N(fi (xij), σ

2
ij)

intuition for hierarchical structure: even if we can have infinite
observation from each instrument, we still cannot recover true
curve m, but rather we will have three instrument-specific
curve f1, f2, f3 that are around m. This is because in addition
to observation error, each instrument has another layer of
built-in error that is specific to that particular machine.
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Hierarchical Gaussian Process - Formal Setup

Likelihood

fi |m ∼ GP(m, ki ), (f1, f2, f3)⊥⊥|m
yij |fi ∼ N(fi (xij), σ

2
ij), (yi1, yi2, . . .)⊥⊥|fi

⇒ yi |m ∼ N(m(xi ), ki (xi , xi ) + Σi )

Prior

m ∼ GP(0, km)

Posterior

for new point x∗ and m∗ = m(x∗):


y1
y2
y3
m∗

 ∼ N

0,


km(x1, x1) + k1(x1, x1) + Σ1 km(x1, x2) km(x1, x3) km(x1, x∗)

km(x2, x1) km(x2, x2) + k2(x2, x2) + Σ2 km(x2, x3) km(x2, x∗)
km(x3, x1) km(x3, x2) km(x3, x3) + k3(x3, x3) + Σ3 km(x3, x∗)
km(x∗, x1) km(x∗, x2) km(x∗, x3) km(x∗, x∗)
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Kernels and hyper-parameters

even if the true curve m has jumps, the instrument-specific
errors on top of m should be smooth (?)

use Gaussian (radial basis function) kernel:

ki (x , x
′) = γi exp(− 1

2l2i
(x − x ′)2)

li controls the smoothness (variability/wiggling) along the
curve

γi controls the severity of random instrument-specific “bias”

Assumptions:
the smoothness (degree of variability/wiggling along the curve)
is the same across instrument ⇒ l1 = l2 = l3
the large dataset may have bigger random “bias”:
γ1 ≥ γ2 = γ3
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m curve and revisit of discontinuity

how about km for mean curve?
Now is the time to incorporate jumps:

Discontinuity can be modeled by Haar wavelet under Gaussian
Process umbrella

m as Haar wavelet linear combination, where coefficients are
independent Gaussian random variable

m defined above is indeed a Gaussian Process with some
induced kernel (needs further work)
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Simulation for data generating process

working on it now...
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