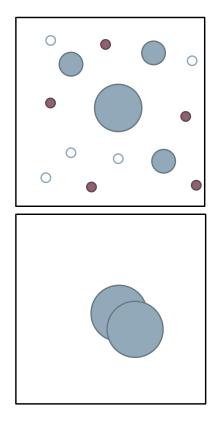

Probabilistic Cataloguing

Stephen K N PORTILLO with Benjamin LEE, Tansu DAYLAN and Douglas P FINKBEINER 25 October 2016 Harvard Astrostatistics Group

Telescopes don't make catalogues!

Slide title stolen from D.W. Hogg and D. Lang, EAS Publication Series 45, 351 (2011) Image: Sloan Digital Sky Survey, DR12

People make catalogues

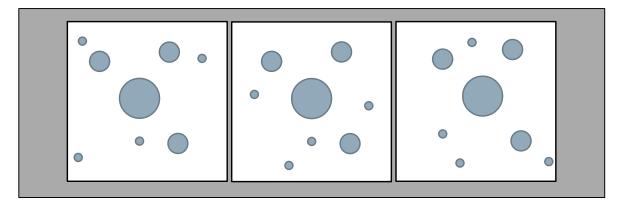

RA (J2000)	DEC (J2000)	g	r	
229.4351	2.010923	0	19.114	
229.4353	1.990166	23.07	21	
229.4358	2.033374	21.809	21 14	NGC 7006
229.4361	2.070269	20.107	19	Fe/H]=-1.48
229.4362	1.997957	22.894	21	
229.4364	2.048578	22.386	21	- /-
229.4366	2.053515	20.853	20 16	3 - / -
229.4369	2.103516	21.827	21	
229.4369	2.043476	23.067	21	
229.437	2.051732	19.96	19	
229.4371	2.102266	20.813	20 18	
229.4373	2.052342	20.785	20	
229.4374	1.996688	21.161	20	
229.4376	2.13321	22.476	21 20	p
229.4378	2.039289	20.883	20	-
229.438	2.077996	22.682	21	-
229.438	2.043483	22.884	21	
229.4381	2.045585	20.111	19 22	
229.4382	2.011463	22.069	21	
229.4382	2.029807	19.625	19	0.0 0.5 1.0 0
229.4382	2.030182	17.835	17	g – r
229.4385	2.157053	22.193	21.877	
229.4385	2.147021	22.492	21.546	
<u>····</u>	•••			

(Deterministic) Catalogues

- A (deterministic) catalogue is a list of point source candidates above some inclusion threshold TS_{incl}

 $Data, TS_{incl} \rightarrow \left\{ \ell_i \pm \sigma_{\ell_i}, \vartheta_i \pm \sigma_{\vartheta_i}, F_i \pm \sigma_{F_i} \right\}_{i=1}^{N}$

- Inclusion threshold = detection threshold: Almost all catalogue sources are true sources But faint true sources are not in the catalogue
- Inclusion threshold < detection threshold: More faint true sources are included in the catalogue But many catalogue sources are not true sources The data is overfitted
- Overlapping point sources may not be deblended



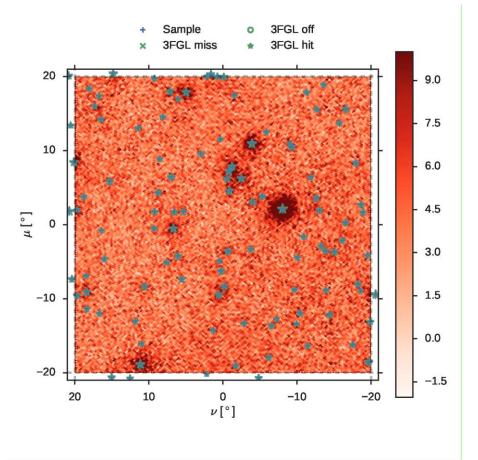
Probabilistic Catalogues

• A probabilistic catalogue is a posterior probability distribution over the space of lists of point source candidates

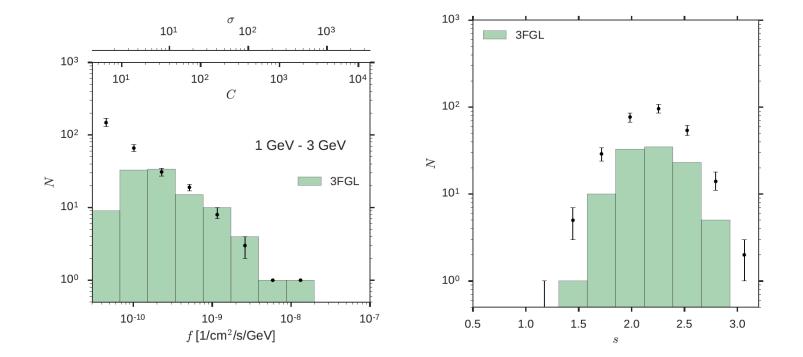
 $P(\{\ell_i, \mathcal{b}_i, F_i\}_{i=1}^N | Data) = \pi(\{\ell_i, \mathcal{b}_i, F_i\}_{i=1}^N) \mathcal{L}(Data | \{\ell_i, \mathcal{b}_i, F_i\}_{i=1}^N)$

• Sampling the probabilistic catalogue provides an *ensemble of catalogues* inferred from the data

D. W. Hogg and D. Lang, arXiv:1008.0738v1 (2010) B. J. Brewer, D. Foreman-Mackey, and D. W. Hogg, ApJ 146, 7 (2013)

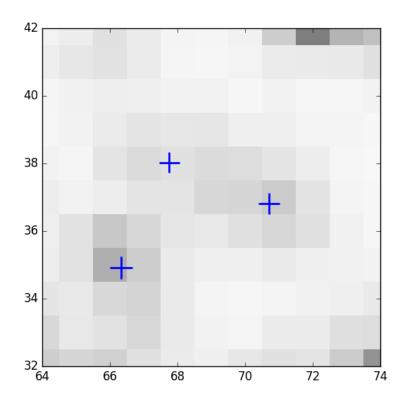

Why Probabilistic Catalogues?

- The reality of a single faint point source candidate will be very uncertain, but the properties of a faint population are constrained
- The uncertainty in deblending sources with overlapping PSFs can be captured
- Provides a framework to marginalize over uncertainties (modelling, instrumental, calibration, etc.)
- Probabilistic cataloguing more fully captures the information contained in the data and the *inherent degeneracies* of point source identification

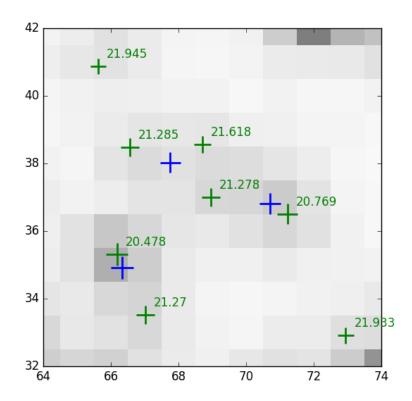

Application I: *Fermi* High Latitude

- North Galactic Pole $20^{\circ} \times 20^{\circ} (N_{pix} = 29\,880)$
- 3 energy bins: 0.3-1 GeV, 1-3 GeV, 3-10 GeV
- Region includes 108 3FGL sources
- Run with ~250 CPU-hours
- Diffuse sources:
 - Galactic diffuse emission
 - Isotropic emission
- Point source population:
 - Mostly distant active galaxies
 - Assumed to be isotropically distributed
 - Unknown flux distribution parameterized as power law

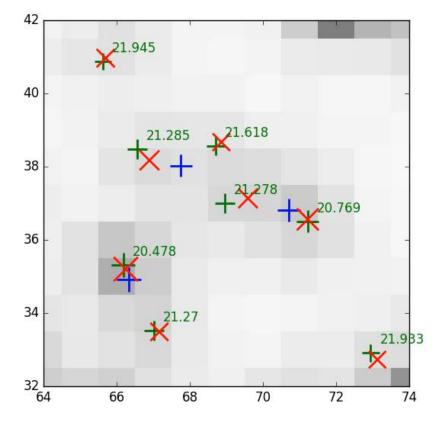
Catalogue Samples


Flux and Colour Distributions

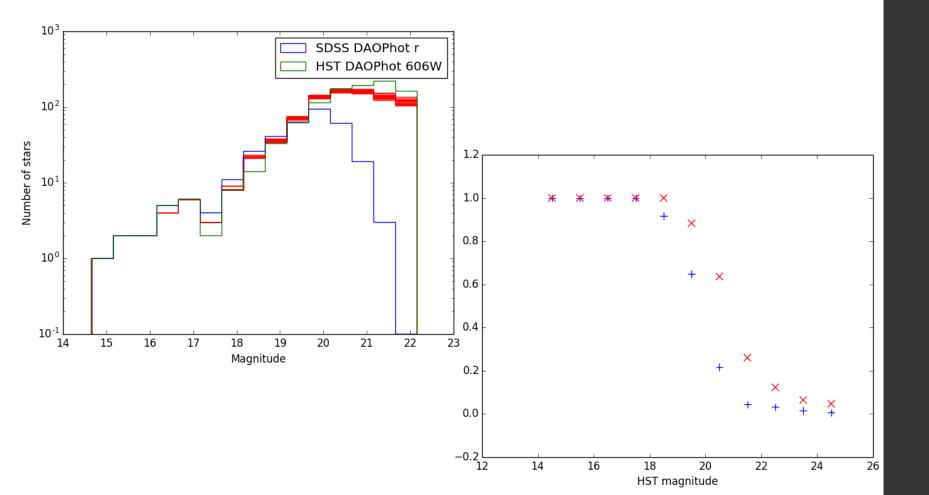
Application II: SDSS Globular Cluster


- Messier 2 $40'' \times 40'' (N_{pix} = 10\ 000)$
- Region includes 337 DAOPhot sources
- Run with ~250 CPU-hours
- Region has also been observed with HST, which has better angular resolution, identifying 1 000 sources

Deterministic Catalogue of SDSS Data


An, D. et al. (2008) ApJS, 179, 2

Deterministic Catalogue of HST Data


Sarajedini, A. et al. (2007) AJ, 133, 1658

Probabilistic Catalogue of SDSS Data

SDSS DAOPhot HST DAOPhot SDSS PCat-Dnest

Completeness

Reversible Jump MCMC

- Allows proposals to change dimensionality of model
 - Move *m* takes *x* and generates auxillary *u* to propose x'
 - Move m' takes x' and generates auxillary u' to propose x

• dim
$$x$$
 + dim u = dim x' + dim u' and $(x, u) \leftrightarrow (x', u')$ one-to-one
 $\alpha(x \to x') = \min\left(1, \frac{\pi(x')}{\pi(x)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)} \frac{j_{m'}(x')}{j_m(x)} \frac{g(u')}{g(u)} \left| \frac{\partial(x', u')}{\partial(x, u)} \right| \right)$

• For example, birth/death between $x = \{x_1, ..., x_N\}$ and $x' = \{x_1, ..., x_{N+1}\}$ has $u = x_{N+1}$ and $u' = \emptyset$

• If birth and death equally likely, sources independent in prior and new source x_2 generated from prior

$$\alpha(x \to x') = \min\left(1, \frac{\pi(N+1)}{\pi(N)} \frac{\mathcal{L}(x'|D)}{\mathcal{L}(x|D)}\right)$$

Catalogue Priors

• Prior that sources are independent and described by population parameters β :

$$\pi(\{\ell_i, \mathscr{B}_i, F_i\}_{i=1}^N, \beta) = \pi(\beta)\pi(N|\beta) \prod_{i=1}^N \pi(\ell_i, \mathscr{B}_i, F_i|\beta)$$

- β can describe both spatial and flux distributions
- What should the prior on the number of sources look like? What do we mean by "the number of sources"?

How many sources are there with a flux above F_{min} ?

 Prior on N through putting a log uniform prior on expected number of sources (N)?

$$\log \frac{\pi(N+1)}{\pi(N)} = \log N - \log(N+1) \approx -\frac{1}{N}$$

Source Number Prior

- But is this prior enough to counteract the fact that models with more sources will fit better?
- What about a prior that penalizes the $(N + 1)^{\text{th}}$ source based on the expected improvement in χ^2 under the null hypothesis that there are N sources?

$$\log \frac{\pi(N+1)}{\pi(N)} = -\frac{3}{2}$$

How many sources meaningfully affect the current data?

What is the most compact representation of the data?

Conclusion

- Probabilistic catalogue samples are an ensemble of catalogues inferred from the data
- A point source population can be distinguished from a diffuse source, even if the individual sources are below the detection threshold
- Overlapping point sources can be better deblended
- This ensemble of catalogues captures the inherent degeneracies of point source identification