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http://www.stsci.edu/~dcoe/BPZ/intro.html
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Why do we care?

• Because we have to.

• Many questions now require large samples of galaxies to 

answer – now entering the “Big Data” era of astronomy.

• Wide-field imaging surveys much cheaper and faster than 

spectroscopic surveys. Also can see fainter objects.

• ~100x increase in sample size, diversity makes up for 

photo-z uncertainties. (Detailed studies can rely on ~1% 

spectroscopic subsample.)



Science Case
Precision cosmology

• Using large samples of galaxies to pin down the dark 

energy equation of state, growth of large-scale 

structure, etc.

Taken from http://kids.strw.leidenuniv.nl/goals.php.

http://kids.strw.leidenuniv.nl/goals.php
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• A forward modeling problem: can we construct a model from 

parameters we care about that matches the observed SED?
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Photo-z’s: Statistically Speaking

• An inverse mapping problem: can we use machine learning

to construct a mapping from color to redshift?
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Model-fitting 

approaches

(color-redshift 

relation assumed)

Machine-learning 

approaches

(feature-redshift 

relation derived)

• Probabilistic

• Interpretable

• Sensitive to systematics

• Generally slow

• Flexible, data-driven

• More robust to systematics

• Generally fast

• Difficult to interpret

• Difficult to derive PDFs
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Feature Projection
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Likelihood / Distance Metric

• What metric(s) to use? 𝑃 𝑔 ℎ

Observed 

galaxy

Training 

galaxy

SDSS Skyserver

Broadband filters

Assume data is normally distributed.

𝑃 𝑭𝑔
 𝑭𝑔,  𝑪𝑔 ∼ 𝑁 𝑭𝑔

 𝑭𝑔,  𝑪𝑔
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Likelihood / Distance Metric

• What metric(s) to use?

Color space (traditional)

Magnitude space (“new”)
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Likelihood / Distance Metric

• What metric(s) to use?

Color space (traditional)

Magnitude space (“new”)

𝑃 𝑔 ℎ
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2

Requires magnitude priors to 

account for galaxy evolution.

Requires good sampling in full 

magnitude space.

“Scale-free”

“Scale-dependent”
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The Problem
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𝑷 𝒉|𝑔

Likelihood

Cool et al. (2007)



Machine Learning Approximation

Galaxy

Training 

data

 𝑷 𝒉|𝑔

Likelihood

Cool et al. (2007)
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Missing Data

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

Observed 

galaxy

Band mask

Training 

galaxy



Now What?

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

−2 ln 𝐿 = ? ? ?



Naïve Likelihood: Multivariate Normal

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

−2 ln 𝐿𝑛 ∼ 𝜒𝑛
2 𝛿𝑛

+𝑛 ln 2𝜋 + ln  𝐶𝑔 +  𝐶ℎ
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Implications

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

SDSS SkyserverSDSS Skyserver

−2 ln 𝐿5 ∼ 𝜒5
2 + 5 ln 2𝜋 + ln  𝐶𝑔 +  𝐶ℎ



Implications

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

SDSS SkyserverSDSS Skyserver

−2 ln 𝐿3 ∼ 𝜒3
2 + 3 ln 2𝜋 + ln  𝐶𝑔

′ +  𝐶ℎ
′



Solutions

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

SDSS SkyserverSDSS Skyserver

−2 ln 𝐿 ∼ 𝑋𝑛 − 𝑋𝑛
′ , 𝑋𝑛, 𝑋𝑛

′ ∼ 𝜒𝑛
2 𝛿𝑛

i.i.d.



Implementation

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

−2 ln 𝐿 = ? ? ?
some transformation of 

doubly-non-central F-

distribution



Implementation

• How to deal with missing data? 𝑃 𝑔 ℎ, 𝒃

−2 ln 𝐿 = 𝜒𝑛
2 − 𝑁𝑏

ignore 

non-centrality

first-order 

correction

𝜒2 =  

𝑖

 𝐹𝑔,𝑖 −  𝐹ℎ,𝑖
2

 𝜎𝑔,𝑖
2 +  𝜎ℎ,𝑖

2



Missing Data: Searching for Neighbors

• How to deal with missing data?  𝑃 𝑔 ℎ, 𝒃

SDSS Skyserver
Galaxy

Training 

data

Cool et al. (2007)
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• How to deal with selection effects? 𝑃  𝑭𝒈 𝑔, 𝑠𝑔 = 1, 𝑺𝑔

Binary selection flag 

(1=in/0=out)

Selection effect(s)
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𝑃 𝑠𝑔 = 1 𝑔, 𝑺𝑔

Original PDFSelection Probability

Marginalized 

Selection Probability
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Mixing and Matching Galaxies

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

𝒑𝑔
′ ~ Mult 𝑛 = 1, 𝒑 = 𝒑𝑔

𝒏 ~  
𝑔∈𝒈

𝒑𝑔
′

Courtesy of Wikipedia.

𝑷 𝒉 ∼ Dir 𝒘 𝜶 = 𝒏 + 1
Population 

weights

Counts

Concentration

Low concentration

High concentration

https://en.wikipedia.org/wiki/Dirichlet_distribution


Hierarchical Modeling

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

𝑃 𝒘, 𝓹𝑔 𝑫, 𝑺

Population weights 

(training set)

Hierarchical 

posteriors



Hierarchical Modeling

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

Gibbs sampling

𝑃 𝒘 𝓹𝑔 , 𝑺

𝑃 𝓹𝑔 𝒘, 𝑺

𝑃 𝒘, 𝓹𝑔 𝑫, 𝑺

Population weights 

(training set)

Hierarchical 

posteriors



Hierarchical Modeling

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

Gibbs sampling

𝑃 𝒘 𝓹𝑔 , 𝑺

𝑃 𝓹𝑔 𝒘, 𝑺

𝑃 𝒘, 𝓹𝑔 𝑫, 𝑺

Population weights 

(training set)

Hierarchical 

posteriors

1. Sample hierarchical posteriors: 

𝓹𝑔
𝑖

~ Mult n = 1, 𝐩 = 𝒑𝑔𝒘 𝑖−1



Hierarchical Modeling

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

Gibbs sampling

𝑃 𝒘 𝓹𝑔 , 𝑺

𝑃 𝓹𝑔 𝒘, 𝑺

𝑃 𝒘, 𝓹𝑔 𝑫, 𝑺

Population weights 

(training set)

Hierarchical 

posteriors

1. Sample hierarchical posteriors: 

𝓹𝑔
𝑖

~ Mult n = 1, 𝐩 = 𝒑𝑔𝒘 𝑖−1

2. Compute counts: 𝒏 𝑖 ~  𝑔∈𝒈 𝓹𝑔
𝑖



Hierarchical Modeling

• How to deal with population mismatch?

Based on Leistedt, Peiris, & Mortlock (2016)

Gibbs sampling

𝑃 𝒘 𝓹𝑔 , 𝑺

𝑃 𝓹𝑔 𝒘, 𝑺

𝑃 𝒘, 𝓹𝑔 𝑫, 𝑺

Population weights 
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Hierarchical 

posteriors

1. Sample hierarchical posteriors: 

𝓹𝑔
𝑖

~ Mult n = 1, 𝐩 = 𝒑𝑔𝒘 𝑖−1

2. Compute counts: 𝒏 𝑖 ~  𝑔∈𝒈 𝓹𝑔
𝑖

3. Sample weights: 𝒘 𝑖 ∼ Dir 𝒘 𝒏 𝑖 + 1
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Application to Mock Data



Tests on ~100k SDSS Galaxies



Next Steps



Robustness of Training Data/Priors
• Hyper Suprime-Cam (HSC) SSP has ~380k objects taken from 11 

surveys.

• Wide variety of selection criteria, data quality/reliability.

Note: old plot from early internal data release.



Robustness of Training Data/Priors

1:1:1 prior

10:5:1 prior

Spec-z : g/prism-z : photo-z 

Relative weights

Preliminary



Incorporating “Physical” Priors
• Moving a galaxy from one redshift to another is a smooth, 

physical process that is well-understood.

• Want to incorporate this into our priors/predictions.

GP with “physical” kernel

Leistedt & Hogg (2016)



Incorporating “Physical” Priors
• Can use to augment training data.

• Straightforward to “impute” missing values.

Leistedt & Hogg (2016)



Likelihood / Distance Metric

• What metric(s) to use? 𝑃 𝑔 ℎ

Observed 

galaxy

Training 

galaxy

NGC 4414 NGC 5457

• More sophisticated machine learning methods 

could be used to compute posterior samples (or 

possibly likelihoods) over complex domains.



Summary

• Photometric redshifts (photo-z’s) are an integral part of 

modern “big data” extragalactic science. 

• Large training datasets gives new opportunities to develop 

Bayesian, data-driven photo-z’s.

• Taking advantage of these datasets requires dealing with 

real-world problems (e.g., biased training data) using a 

variety of statistical methods (e.g., hierarchical Bayes).

• Early results look promising!



Code is available!

Although still under active development, code, 

tutorials, and rough draft of a paper are online at:

github.com/joshspeagle/frankenz

github.com/joshspeagle/frankenz

