Detecting planets: jointly modeling radial velocity and stellar activity time series

David Jones SAMSI

Collaborators: David Stenning, Eric Ford, Robert Wolpert, Tom Loredo

March 7, 2017

Detecting planets: jointly modeling radial velocity and stellar activity time series

Or ... using GPs to find EPs

David Jones SAMSI

Collaborators: David Stenning, Eric Ford, Robert Wolpert, Tom Loredo

March 7, 2017

Exoplanets in the News: Trappist-1

https://www.eso.org

So why keep looking for planets?

Transit and radial velocity methods

NASA, https://www.nasa.gov/

Radial velocity method

NASA, https://exoplanets.nasa.gov/interactable/11/

Radial velocity signal

Figure credit: John Asher Johnson, Harvard

 Usually the radial velocity signal is smaller and is corrupted by stellar activity

Stellar activity

► Corrupted RV = RV + stellar activity + noise

Challenges:

- \blacktriangleright Earth like planets usually give $<1ms^{-1}$ signal . . . slower than walking speed!
- Multiple and evolving stellar activity phenomena
- ► Highly irregular observations and lower SNR

How to stop the corruption!

Statistical opportunity: use information from the spectrum to recover the corruption and subtract it out

- ▶ Observation times: t_1, t_2, \ldots, t_n
- Raw data is spectrum at each time point e.g.

 Much more information than a single univariate time series is available

Recent approach: Rajpaul et al. 2015

- ► Rajpaul et al. 2015 jointly model the corrupted RV time series and stellar activity proxies using dependent Gaussian processes
- ▶ Spot only (no planet) example from Rajpaul et al. 2015:

Figure credit: Rajpaul et al. 2015

Real data looks like this ...

Figure credit: Rajpaul et al. 2015

Our goals

- More informative proxies GPCA and diffusion maps (David Stenning)
- 2) Identify more flexible models to capture new proxies and address existing limitations
- 3) Model comparison procedure

Goal 1: new stellar activity proxies

Simulated Stellar Activity Data: NO PLANET YET!

Dumusque et al 2014: Spot Oscillation And Planet (SOAP) 2.0 radial velocity simulation software.

▶ Settings: one spot, stellar inclination 90 degs, spot latitude 40 degs

 Simulated 25 spectra per stellar rotation with 237,944 wavelengths per spectra

Spot Effects

Figure credit: David Stenning

Finding proxies using GPCA: "Generalized" PCA

Observation times: t_1, t_2, \ldots, t_n

- ▶ Davis et al. (2017) investigate the use of PCA coefficients as activity proxies
- ▶ We use the following GPCA:
 - 1. First basis vector is chosen to correspond to the radial velocity
 - Subsequent orthogonal vectors are chosen to maximize the variation explained as in PCA

RV corruption and GPCA proxies: SOAP data

RV corruption and 5 PCA scores for SOAP 2.0 simulated data:

Diffusion maps

- David Stenning's focus
- ► Removes linear subspace restriction
- ► Illustration example:

Figure credit: Peter Freeman, CMU, https://hea-www.harvard.edu/astrostat/CAS2010/pfreeman_CAS2010aug24.pdf

Diffusion maps

Figure credit: David Stenning

RV corruption and DM proxies: SOAP data

RV corruption and 5 DM scores for SOAP 2.0 simulated data:

Goal 2: identify more flexible models

Model rules

Model rules

▶ Be sufficiently flexible: stellar activity proxies must be well jointly modeled so that the component corrupting the RV signal can be efficiently removed

Model rules

- ▶ Be sufficiently flexible: stellar activity proxies must be well jointly modeled so that the component corrupting the RV signal can be efficiently removed
- ▶ Don't eat the planet

Gaussian processes

- ▶ **Def:** a Gaussian process is a stochastic process X(t), $t \in T$ s.t. for any $t_1, \ldots, t_m \in T$, the vector $(X(t_1), \ldots, X(t_m))$ has a multivariate Normal distribution.
- e.g. centred radial velocity time series $\sim N(0, \Sigma)$
- ▶ Typically a parametric form is assumed for the covariance matrix Σ e.g.

$$\mathsf{Cov}(X(t),X(s)) = \beta^2 \exp\left(-\frac{(t-s)^2}{\lambda^2}\right)$$

Model from Rajpaul et al. 2015

Figure credit: Rajpaul et al. 2015

Dependent Gaussian processes:

$$\Delta \mathsf{RV}(t) = \mathsf{a}_{11} X(t) + \mathsf{a}_{12} \dot{X}(t) + \sigma_1 \epsilon_1(t)$$

$$\log R'_{HK}(t) = \mathsf{a}_{21} X(t) + \sigma_2 \epsilon_2(t)$$

$$\mathsf{BIS}(t) = \mathsf{a}_{31} X(t) + \mathsf{a}_{32} \dot{X}(t) + \sigma_3 \epsilon_3(t)$$

Covariance function for X(t):

$$\mathsf{Cov}(X(t),X(s)) = K(t,s) = \mathsf{exp}\left(-rac{\mathsf{sin}^2(\pi(t-s)/ au)}{2\lambda_p^2} - rac{(t-s)^2}{2\lambda_e^2}
ight)$$

Constructing the covariance matrix

$$\Sigma = \left(\begin{array}{ccc} \Sigma^{(1,2)} & \Sigma^{(1,2)} & \Sigma^{(1,3)} \\ \Sigma^{(2,1)} & \Sigma^{(2,2)} & \Sigma^{(2,3)} \\ \Sigma^{(3,1)} & \Sigma^{(3,2)} & \Sigma^{(3,3)} \end{array}\right)$$

- **Example:** $\Sigma^{(1,2)}$ gives the covariance between observations of $\Delta RV(t)$ and $\log R'_{HK}(t)$
- ▶ Calculation: we use the fact that

$$Cov(X(t), \dot{X}(s)) = \frac{\partial K(t, s)}{\partial s}$$
$$Cov(\dot{X}(t), \dot{X}(s)) = \frac{\partial^2 K(t, s)}{\partial t \partial s}$$

Rajpaul et al. model applied to GPCA scores: MLE fit

► They weight the measurement errors to get a better fit to the first component (RV)

Additional limitations of Rajpaul et al. model

1. Can't capture DM scores with only X(t) and $\dot{X}(t)$

Additional limitations of Rajpaul et al. model

2. Overly constrained, causing strange behaviour

Additional limitations of Rajpaul et al. model

$$\begin{aligned} \mathsf{GPCA1}(t_i) &= \mathsf{a}_{11} X(t_i) + \mathsf{a}_{12} \dot{X}(t_i) + \sigma_{1i} \epsilon_1(t_i) \\ \mathsf{GPCA2}(t_i) &= \mathsf{a}_{21} X(t_i) \\ \mathsf{GPCA3}(t_i) &= \mathsf{a}_{31} X(t_i) + \mathsf{a}_{32} \dot{X}(t_i) + \sigma_{3i} \epsilon_3(t_i) \end{aligned}$$

Negative entries of covariance matrix:

I tried a number of things ...

What worked well:

- ▶ Adding in $\ddot{X}(t)$
- Adding an independent GP to GPCA2 / GPCA3

What didn't work well:

- Inflating the measurement errors of GPCA2 (and GPCA3)
- Nugget terms
- Other covariance functions: periodic, sum of two squared exponential kernels, geometric, cosine
- Priors (did help in some cases)
- ▶ Allow GPCA2 to use $\dot{X}(t)$

General class of models we consider

Output1
$$(t_i) = a_{11}X(t_i) + a_{12}\dot{X}(t_i) + a_{13}\ddot{X}(t_i) + a_{14}Y_1(t_i) + \sigma_{i1}\epsilon_1(t_i)$$

Output2 $(t_i) = a_{21}X(t_i) + a_{22}\dot{X}(t_i) + a_{23}\ddot{X}(t_i) + a_{24}Y_2(t_i) + \sigma_{i2}\epsilon_2(t_i)$
Output3 $(t_i) = a_{31}X(t_i) + a_{32}\dot{X}(t_i) + a_{33}\ddot{X}(t_i) + a_{34}Y_3(t_i) + \sigma_{i3}\epsilon_3(t_i)$
...

- ▶ Some of the a_{ii} 's will be set to zero
- ▶ $Y_1(t), Y_2(t), Y_3(t), \ldots$ are independent GPs BUT: $Y_1(t), Y_2(t), Y_3(t), \ldots$ have the same covariance parameters (different to X(t))

Covariance function:

$$\mathcal{K}(t,s) = \exp\left(-rac{\sin^2(\pi(t-s)/ au)}{2\lambda_p^2} - rac{(t-s)^2}{2\lambda_e^2}
ight)$$

Goal 3: model selection

Three stages

- Preliminary stellar activity model search using AIC, BIC, and cross validation
- 2. **Simulation study** to assess planet finding power for few top model choices (BIC based)
- 3. Choose best model and use proper Bayes factor / better approximation to calibrate test and perform search

Preliminary GPCA model selection summary

- ▶ BIC: $m \ln n 2 \ln L(\hat{\theta})$
- ▶ CV criterion: —log-like for 20% randomly missing data
- ▶ Number of models = 3375

Model	AIC.rank	BIC.rank	no.paras	dev	AIC	BIC	CV.rank	CV
Rajpaul	2313	2242	8	133	-573	-558	337	-39
GPCA2+GP	424	372	12	20	-678	-655	2262	18397
min.AIC	1	1	8	10	-695	-680	19	-45
min.BIC	1	1	8	10	-695	-680	19	-45
min.CV	116	47	12	9	-689	-666	1	-46

Typical AIC / BIC optimal model fit

Hypothesis Testing

Question: does the stellar activity model help us find planets?

How much power does the following test have?

- ► H₀: no planet stellar activity model is sufficient
- \triangleright H_A : planet need additional model for RV signal due to a planet

Adding in a planet: Keplerian model

Taken from Loredo et al. 2012:

$$M(t) = \frac{2\pi t}{\tau} + M_0$$

$$E(t) - e\sin E(t) = M(t)$$

$$\tan \frac{\phi(t)}{2} = \left(\frac{1+e}{1-e}\right) \tan \frac{E(t)}{2}$$
 RV due to planet: $v(t) = K(e\cos \omega + \cos(\omega + \phi(t))) + \gamma$

Parameters varied:

K=velocity semi-amplitude (compared with ≈ 7.5 m/s for stellar activity) τ =planet orbital period (compared with 10 days for stellar period)

Null distribution for AIC / BIC optimal model

- ▶ 350 simulated datasets without a planet
- ▶ BIC: $m \ln L(\hat{\theta}) 2 \ln L(\hat{\theta})$
- $ightharpoonup \Delta BIC = null model BIC null model plus planet model BIC$

Looking for Planets

- ▶ 50 simulations for each planet setting (not complete)
- ▶ Semi-amplitude: K = 0.1, 0.25, 0.5, 1, 2 m/s (corresponds to 1.3%, 3.3%, 6.7%, 13.4%, 26.8% of stellar activity amplitude)
- ▶ Period: $\tau = 5, 6, ..., 9$ (compared with 10 for stellar rotation)

	$\tau = 5$	$\tau = 6$	$\tau = 7$	$\tau = 8$	$\tau = 9$	Avg. power
K=0.1 m/s (1.3%)	6.84	1.30	-3.08	3.30	-4.55	0.02
K=0.25 m/s (3.3%)	8.63	12.19	5.21	5.96	3.73	0.12
K=0.5 m/s (6.7%)	44.72	75.08	71.46	63.76	39.99	0.79
K=1 m/s (13.4%)	150.53	267.30	250.70	273.08	153.20	0.96
K=2 m/s (26.8%)	213.79	353.26	396.91	442.55	362.91	1.00

K = 0.1 m/s (1.3% of SA)

K = 0.25 m/s (3.3% of SA)

K = 0.5 m/s (6.7% of SA)

K = 1 m/s (13.4% of SA)

K = 2m/s (26.8% of SA)

DM BIC-optimal model - eats the planet!

	log.period	$\log \lambda_p$	$\log\lambda_e$	X coeff	\dot{X} coeff	\ddot{X} coeff	Y coeff
DM1				0.00	-0.5		
DM2	2.30	-1.40	10.00	0.02		-0.03	0.27
DM3	2.30	-1.40	10.00	-0.09		-0.15	-0.35
Joint	2.50	10.00	0.35				

Current best DM model

	log.period	$\log \lambda_p$	$\log \lambda_e$	X coeff	\dot{X} coeff	\ddot{X} coeff	Y coeff
DM1				-0.05	-0.58		
DM2				0.77			
DM3	2.30	-0.51	1.23			-0.39	0.34
Joint	2.17	-0.33	1.38				

Null distribution for selected model

- ▶ 500 simulated datasets without a planet
- ▶ BIC: $m \ln n 2 \ln L(\hat{\theta})$
- ightharpoonup $\Delta BIC = null model BIC null model plus planet model BIC$

Avg. power results - as of 1pm!

١	
	W

	au=5
K=0.1 m/s (1.3%)	0.33
K=0.25 m/s (3.3%)	0.35
K=0.5 m/s (6.7%)	0.82
K=1 m/s (13.4%)	
K=2 m/s (26.8%)	

Summary and next steps

Summary:

- 1) Identify informative stellar activity proxies
- 2) Propose a flexible class of models
- 3) Select the optimal model for the purpose of planet detection

Next steps and future directions:

▶ Test for a variety of inclinations and spot latitudes

- ► Test on evolving spots and other stellar activity phenomena
- ▶ Real data challenges e.g. finding periods with erratic sampling
- Other proxies
- Scheduling observations

Fit to naively evolving spot data

	log.period	$\log \lambda_p$	$\log\lambda_e$	X coeff	X coeff	X coeff	Y coeff
GPCA1				0.01	0.15		
GPCA2				0.18		0.04	
GPCA3					0.16		
Joint	2.30	-0.90	3.20				

References

- Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S., & Roberts, S. (2015). A
 Gaussian process framework for modelling stellar activity signals in radial velocity
 data. Monthly Notices of the Royal Astronomical Society, 452(3), 2269-2291.
- Dumusque, X., Boisse, I., & Santos, N. C. (2014). SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar sports and plages. The Astrophysical Journal, 796(2), 132.
- Davis, A. B., Cisewski, J., Dumusque, X., Fischer, D., & Ford, E. B. (2017). Insights on the spectral signatures of RV jitter from PCA. In American Astronomical Society Meeting Abstracts. 229.
- Loredo, T. J., Berger, J. O., Chernoff, D. F., Clyde, M. A., & Liu, B. (2012).
 Bayesian methods for analysis and adaptive scheduling of exoplanet observations.
 Statistical Methodology, 9(1), 101-114.
- Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning (2006). The MIT Press.