Detecting planets: jointly modeling radial velocity and stellar activity time series

David Jones

SAMSI

Collaborators: David Stenning, Eric Ford, Robert Wolpert, Tom Loredo

March 7, 2017

Detecting planets: jointly modeling radial velocity and stellar activity time series

Or ... using GPs to find EPs

David Jones

SAMSI

Collaborators: David Stenning, Eric Ford, Robert Wolpert, Tom Loredo

March 7, 2017

Exoplanets in the News: Trappist-1

TRAPPIST-1 System

,
h
https://www.eso.org

So why keep looking for planets?

http://exoplanets.org

Transit and radial velocity methods

NASA, https://www.nasa.gov/

Radial velocity method

NASA, https://exoplanets.nasa.gov/interactable/11/

Radial velocity signal

Figure credit: John Asher Johnson, Harvard

- Usually the radial velocity signal is smaller and is corrupted by stellar activity

Stellar activity

- Corrupted RV $=$ RV + stellar activity + noise

RV corruption

Corrupted RV $=$

Challenges:

- Earth like planets usually give $<1 \mathrm{~ms}^{-1}$ signal ...slower than walking speed!
- Multiple and evolving stellar activity phenomena
- Highly irregular observations and lower SNR

How to stop the corruption!

Statistical opportunity: use information from the spectrum to recover the corruption and subtract it out

- Observation times: $t_{1}, t_{2}, \ldots, t_{n}$
- Raw data is spectrum at each time point e.g.

- Much more information than a single univariate time series is available

Recent approach: Rajpaul et al. 2015

- Rajpaul et al. 2015 jointly model the corrupted RV time series and stellar activity proxies using dependent Gaussian processes
- Spot only (no planet) example from Rajpaul et al. 2015:

Figure credit: Rajpaul et al. 2015

Real data looks like this...

Figure credit: Rajpaul et al. 2015

Our goals

1) More informative proxies - GPCA and diffusion maps (David Stenning)
2) Identify more flexible models to capture new proxies and address existing limitations
3) Model comparison procedure

Goal 1: new stellar activity proxies

Simulated Stellar Activity Data: NO PLANET YET!

Dumusque et al 2014: Spot Oscillation And Planet (SOAP) 2.0 radial velocity simulation software.

- Settings: one spot, stellar inclination 90 degs, spot latitude 40 degs

- Simulated 25 spectra per stellar rotation with 237,944 wavelengths per spectra

Spot Effects

Comparison quiet photosphere and spot spectra

Figure credit: David Stenning

Finding proxies using GPCA: "Generalized" PCA

$$
\text { Observation times: } t_{1}, t_{2}, \ldots, t_{n}
$$

237,944 wavelengths

- Davis et al. (2017) investigate the use of PCA coefficients as activity proxies
- We use the following GPCA:

1. First basis vector is chosen to correspond to the radial velocity
2. Subsequent orthogonal vectors are chosen to maximize the variation explained as in PCA

RV corruption and GPCA proxies: SOAP data

RV corruption and 5 PCA scores for SOAP 2.0 simulated data:

Diffusion maps

- David Stenning's focus
- Removes linear subspace restriction
- Illustration example:

Pick location...

...and map out the random walk.

Figure credit: Peter Freeman, CMU, https://hea-www.harvard.edu/ astrostat/CAS2010/pfreeman_CAS2010aug24.pdf

Diffusion maps

Figure credit: David Stenning

RV corruption and DM proxies: SOAP data

RV corruption and 5 DM scores for SOAP 2.0 simulated data:

Goal 2: identify more flexible models

Model rules

Model rules

- Be sufficiently flexible: stellar activity proxies must be well jointly modeled so that the component corrupting the RV signal can be efficiently removed

Model rules

- Be sufficiently flexible: stellar activity proxies must be well jointly modeled so that the component corrupting the RV signal can be efficiently removed
- Don't eat the planet

Gaussian processes

- Def: a Gaussian process is a stochastic process $X(t), t \in T$ s.t. for any $t_{1}, \ldots, t_{m} \in T$, the vector $\left(X\left(t_{1}\right), \ldots, X\left(t_{m}\right)\right)$ has a multivariate Normal distribution.
- e.g. centred radial velocity time series $\sim N(0, \Sigma)$
- Typically a parametric form is assumed for the covariance matrix Σ e.g.

$$
\operatorname{Cov}(X(t), X(s))=\beta^{2} \exp \left(-\frac{(t-s)^{2}}{\lambda^{2}}\right)
$$

Model from Rajpaul et al. 2015

Figure credit: Rajpaul et al. 2015
Dependent Gaussian processes:

$$
\Delta \mathrm{RV}(t)=a_{11} X(t)+a_{12} \dot{X}(t)+\sigma_{1} \epsilon_{1}(t)
$$

Stellar activity proxies $\left\{\begin{aligned} \log R_{H K}^{\prime}(t) & =a_{21} X(t) \quad+\sigma_{2} \epsilon_{2}(t) \\ \operatorname{BIS}(t) & =a_{31} X(t)+a_{32} \dot{X}(t)+\sigma_{3} \epsilon_{3}(t)\end{aligned}\right.$
Covariance function for $X(t)$:

$$
\operatorname{Cov}(X(t), X(s))=K(t, s)=\exp \left(-\frac{\sin ^{2}(\pi(t-s) / \tau)}{2 \lambda_{p}^{2}}-\frac{(t-s)^{2}}{2 \lambda_{e}^{2}}\right)
$$

Constructing the covariance matrix

$$
\Sigma=\left(\begin{array}{lll}
\Sigma^{(1,2)} & \Sigma^{(1,2)} & \Sigma^{(1,3)} \\
\Sigma^{(2,1)} & \Sigma^{(2,2)} & \Sigma^{(2,3)} \\
\Sigma^{(3,1)} & \Sigma^{(3,2)} & \Sigma^{(3,3)}
\end{array}\right)
$$

- Example: $\Sigma^{(1,2)}$ gives the covariance between observations of $\Delta \mathrm{RV}(t)$ and $\log R_{H K}^{\prime}(t)$
- Calculation: we use the fact that

$$
\begin{aligned}
& \operatorname{Cov}(X(t), \dot{X}(s))=\frac{\partial K(t, s)}{\partial s} \\
& \operatorname{Cov}(\dot{X}(t), \dot{X}(s))=\frac{\partial^{2} K(t, s)}{\partial t \partial s}
\end{aligned}
$$

Rajpaul et al. model applied to GPCA scores: MLE fit

- They weight the measurement errors to get a better fit to the first component (RV)

Additional limitations of Rajpaul et al. model

1. Can't capture DM scores with only $X(t)$ and $\dot{X}(t)$

Additional limitations of Rajpaul et al. model
2. Overly constrained, causing strange behaviour

Additional limitations of Rajpaul et al. model

$$
\begin{aligned}
\operatorname{GPCA} 1\left(t_{i}\right) & =a_{11} X\left(t_{i}\right)+a_{12} \dot{X}\left(t_{i}\right) \\
\operatorname{GPCA} 2\left(t_{i}\right) & =\sigma_{1 i} \epsilon_{1}\left(t_{i}\right) \\
\operatorname{GPCA} 3\left(t_{i}\right) & =\sigma_{2 i} \epsilon_{2}\left(t_{i}\right) \\
& x\left(t_{i}\right)+a_{32} \dot{X}\left(t_{i}\right)+\sigma_{3 i} \epsilon_{3}\left(t_{i}\right)
\end{aligned}
$$

Negative entries of covariance matrix:

I tried a number of things ...

What worked well:

- Adding in $\ddot{X}(t)$
- Adding an independent GP to GPCA2 / GPCA3

What didn't work well:

- Inflating the measurement errors of GPCA2 (and GPCA3)
- Nugget terms
- Other covariance functions: periodic, sum of two squared exponential kernels, geometric, cosine
- Priors (did help in some cases)
- Allow GPCA2 to use $\dot{X}(t)$

General class of models we consider

Output1 $\left(t_{i}\right)=a_{11} X\left(t_{i}\right)+a_{12} \dot{X}\left(t_{i}\right)+a_{13} \ddot{X}\left(t_{i}\right)+a_{14} Y_{1}\left(t_{i}\right)+\sigma_{i 1} \epsilon_{1}\left(t_{i}\right)$
Output2 $\left(t_{i}\right)=a_{21} X\left(t_{i}\right)+a_{22} \dot{X}\left(t_{i}\right)+a_{23} \ddot{X}\left(t_{i}\right)+a_{24} Y_{2}\left(t_{i}\right)+\sigma_{i 2} \epsilon_{2}\left(t_{i}\right)$
Output3 $\left(t_{i}\right)=a_{31} X\left(t_{i}\right)+a_{32} \dot{X}\left(t_{i}\right)+a_{33} \ddot{X}\left(t_{i}\right)+a_{34} Y_{3}\left(t_{i}\right)+\sigma_{i 3} \epsilon_{3}\left(t_{i}\right)$

- Some of the $a_{i j}$'s will be set to zero
- $Y_{1}(t), Y_{2}(t), Y_{3}(t), \ldots$ are independent GPs

BUT: $Y_{1}(t), Y_{2}(t), Y_{3}(t), \ldots$ have the same covariance parameters (different to $X(t)$)

Covariance function:

$$
K(t, s)=\exp \left(-\frac{\sin ^{2}(\pi(t-s) / \tau)}{2 \lambda_{p}^{2}}-\frac{(t-s)^{2}}{2 \lambda_{e}^{2}}\right)
$$

Goal 3: model selection

Three stages

1. Preliminary stellar activity model search using AIC, BIC, and cross validation
2. Simulation study to assess planet finding power for few top model choices (BIC based)
3. Choose best model and use proper Bayes factor / better approximation to calibrate test and perform search

Preliminary GPCA model selection summary

- BIC: $m \ln n-2 \ln L(\hat{\theta})$
- CV criterion: - log-like for 20% randomly missing data
- Number of models $=3375$

Model	AIC.rank	BIC.rank	no.paras	dev	AIC	BIC	CV.rank	CV
Rajpaul	2313	2242	8	133	-573	-558	337	-39
GPCA2+GP	424	372	12	20	-678	-655	2262	18397
min.AIC	1	1	8	10	-695	-680	19	-45
min.BIC	1	1	8	10	-695	-680	19	-45
min.CV	116	47	12	9	-689	-666	1	-46

Typical AIC / BIC optimal model fit

log.period $\log \lambda_{p} \quad \log \lambda_{e} \quad X$ coeff $\quad \dot{X}$ coeff $\quad \ddot{X}$ coeff $\quad Y$ coeff

GPCA1				0.01	0.21	
GPCA2				0.27		0.05
GPCA3					0.18	
Joint	2.30	-1.08	21.16			

Hypothesis Testing

Question: does the stellar activity model help us find planets?
How much power does the following test have?

- H_{0} : no planet - stellar activity model is sufficient
- H_{A} : planet - need additional model for RV signal due to a planet

Adding in a planet: Keplerian model

Taken from Loredo et al. 2012:

$$
\begin{aligned}
M(t) & =\frac{2 \pi t}{\tau}+M_{0} \\
E(t)-e \sin E(t) & =M(t) \\
\tan \frac{\phi(t)}{2} & =\left(\frac{1+e}{1-e}\right) \tan \frac{E(t)}{2}
\end{aligned}
$$

RV due to planet: $v(t)=K(e \cos \omega+\cos (\omega+\phi(t)))+\gamma$
Parameters varied:
$K=$ velocity semi-amplitude (compared with $\approx 7.5 \mathrm{~m} / \mathrm{s}$ for stellar activity) $\tau=$ planet orbital period (compared with 10 days for stellar period)

Null distribution for AIC / BIC optimal model

- 350 simulated datasets without a planet
- BIC: $m \ln L(\hat{\theta})-2 \ln L(\hat{\theta})$
- $\Delta \mathrm{BIC}=$ null model BIC - null model plus planet model BIC

Looking for Planets

- 50 simulations for each planet setting (not complete)
- Semi-amplitude: $K=0.1,0.25,0.5,1,2 \mathrm{~m} / \mathrm{s}$ (corresponds to $1.3 \%, 3.3 \%, 6.7 \%, 13.4 \%, 26.8 \%$ of stellar activity amplitude)
- Period: $\tau=5,6, \ldots, 9$ (compared with 10 for stellar rotation)

	$\tau=5$	$\tau=6$	$\tau=7$	$\tau=8$	$\tau=9$	Avg. power
$\mathrm{K}=0.1 \mathrm{~m} / \mathrm{s}(1.3 \%)$	6.84	1.30	-3.08	3.30	-4.55	0.02
$\mathrm{~K}=0.25 \mathrm{~m} / \mathrm{s}(3.3 \%)$	8.63	12.19	5.21	5.96	3.73	0.12
$\mathrm{~K}=0.5 \mathrm{~m} / \mathrm{s}(6.7 \%)$	44.72	75.08	71.46	63.76	39.99	0.79
$\mathrm{~K}=1 \mathrm{~m} / \mathrm{s}(13.4 \%)$	150.53	267.30	250.70	273.08	153.20	0.96
$\mathrm{~K}=2 \mathrm{~m} / \mathrm{s}(26.8 \%)$	213.79	353.26	396.91	442.55	362.91	1.00

$$
K=0.1 \mathrm{~m} / \mathrm{s}(1.3 \% \text { of } \mathrm{SA})
$$

$K=0.25 \mathrm{~m} / \mathrm{s}(3.3 \%$ of SA$)$

$K=0.5 \mathrm{~m} / \mathrm{s}(6.7 \%$ of SA$)$

$$
K=1 \mathrm{~m} / \mathrm{s}(13.4 \% \text { of } \mathrm{SA})
$$

$$
K=2 \mathrm{~m} / \mathrm{s}(26.8 \% \text { of } \mathrm{SA})
$$

DM BIC-optimal model - eats the planet!

\log.period $\log \lambda_{p} \quad \log \lambda_{e} \quad X$ coeff $\quad \dot{X}$ coeff $\quad \ddot{X}$ coeff $\quad Y$ coeff

DM1				0.00	-0.5		
DM2	2.30	-1.40	10.00	0.02		-0.03	0.27
DM3	2.30	-1.40	10.00	-0.09		-0.15	-0.35
Joint	2.50	10.00	0.35				

Current best DM model

	\log. period	$\log \lambda_{p}$	$\log \lambda_{e}$	X coeff	\dot{X} coeff	\ddot{X} coeff	Y coeff
DM1				-0.05	-0.58		
DM2				0.77			-0.39
DM3	2.30	-0.51	1.23			0.34	
Joint	2.17	-0.33	1.38				

Null distribution for selected model

- 500 simulated datasets without a planet
- BIC: $m \ln n-2 \ln L(\hat{\theta})$
- $\Delta \mathrm{BIC}=$ null model BIC - null model plus planet model BIC

Avg. power results - as of 1 pm !

	$\tau=5$
$\mathrm{~K}=0.1 \mathrm{~m} / \mathrm{s}(1.3 \%)$	0.33
$\mathrm{~K}=0.25 \mathrm{~m} / \mathrm{s}(3.3 \%)$	0.35
$\mathrm{~K}=0.5 \mathrm{~m} / \mathrm{s}(6.7 \%)$	0.82
$\mathrm{~K}=1 \mathrm{~m} / \mathrm{s}(13.4 \%)$	
$\mathrm{K}=2 \mathrm{~m} / \mathrm{s}(26.8 \%)$	

Summary and next steps

Summary:

1) Identify informative stellar activity proxies
2) Propose a flexible class of models
3) Select the optimal model for the purpose of planet detection

Next steps and future directions:

- Test for a variety of inclinations and spot latitudes

- Test on evolving spots and other stellar activity phenomena
- Real data challenges e.g. finding periods with erratic sampling
- Other proxies
- Scheduling observations

Fit to naively evolving spot data

	log.period	$\log \lambda_{p}$	$\log \lambda_{e}$	X coeff	\dot{X} coeff	\ddot{X} coeff	Y coeff
GPCA1				0.01	0.15		
GPCA2				0.18		0.04	
GPCA3					0.16		
Joint	2.30	-0.90	3.20				

References

1. Rajpaul, V., Aigrain, S., Osborne, M. A., Reece, S., \& Roberts, S. (2015). A Gaussian process framework for modelling stellar activity signals in radial velocity data. Monthly Notices of the Royal Astronomical Society, 452(3), 2269-2291.
2. Dumusque, X., Boisse, I., \& Santos, N. C. (2014). SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar sports and plages. The Astrophysical Journal, 796(2), 132.
3. Davis, A. B., Cisewski, J., Dumusque, X., Fischer, D., \& Ford, E. B. (2017). Insights on the spectral signatures of RV jitter from PCA. In American Astronomical Society Meeting Abstracts, 229.
4. Loredo, T. J., Berger, J. O., Chernoff, D. F., Clyde, M. A., \& Liu, B. (2012). Bayesian methods for analysis and adaptive scheduling of exoplanet observations. Statistical Methodology, 9(1), 101-114.
5. Rasmussen, C. E., \& Williams, C. K. (2006). Gaussian processes for machine learning (2006). The MIT Press.
