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Sparse state vector 
with     non-zero 

elements
k

m

n

Sparse signal recovery (compressed sensing)

           under-determined: 
more unknowns than data
n < m



Sparsity promoting methods: L0 regularization
promote sparsity

The L0 pseudo-norm simply counts the number of non-zero elements 

This is combinatorial and seemingly unfeasible to solve in reasonable time 
(<years) for any large system (>100 elements)

Damped least squares: L2 regularization
damp oscillations

Solutions vary smoothly in space (common in various formulations) 
Classical approach with exact single step solution

min kGm� dk2 + �kmk2

Variations on state vector regularization

min kGm� dk2 + �kmk0



Sparsity promoting methods: L1 regularization
promote sparsity

The L1 norm can often be used to recover the L0 pseudo-norm solution 

Global minimum can be found by convex optimization (e.g., quadratic 
programming) and many new algorithms

min kGm� dk2 + �kmk1

Damped least squares: L2 regularization
damp oscillations

Solutions vary smoothly in space (common in various formulations) 
Classical approach with exact single step solution

min kGm� dk2 + �kmk2

Variations on state vector regularization



A geometric view of compressed sensing
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A geometric view of compressed sensing
Minimize data misfit and p-norm of state vector

f = kGm� dk2 + �kmkp

model regularization
fit to data
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Same solution for p=1, p=0



When does this work?
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Theory 
Candes, Romberg, and Tao (2006)

Empirical evidence 
Donoho and Tanner (2009)

L1 = L0 L1 = L0

L1 6= L0L1 6= L0

Frequency distribution of operator elements (Davenport et al., 2011) 
Good:  Power-law, Gaussian, … 
Bad: Uniform, anything with any negative eigenvalues



Replace unconstrained problem with an equivalent constrained problem 
(Tibshirani, 1996): 

min kGm� dk2 subject to kmk1  ⌧
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Some stuff Doug made me do

0 10
0

10
True stars (10)

0 10
0

10
Pixels (100)

0 10
0

10
Amplified PSF

0 10
0

10
True stars + PSF

0 10
0

10
Noise

0 10
0

10
True Stars + PSF + Noise

0 10
0

10
Found stars (12)

0 10
0

10
Predicted

0 10
0

10
ResidualOver parameterize geometry (100 grid points per pixel) 

- 100 x 10,000 linear flux & quantized position operator 
Gaussian point spread function 
Solve in < 0.2 seconds (van den Berg and Friedlander, 2008)
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More stuff that Doug made me do

To do: 
Constrain flux distributions 
How many stars can we recover? vs. How many are there? 
If PSFs are localized in space we can go very fast
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Synthetic slip
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Imaging fault behavior…how well can we do?

Synthetic observations



Resolution test - ring
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Resolution test - ring

Synthetic 
slip
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Resolution test - ring

Synthetic 
slip

Smooth 
recovery

Sparse 
recovery

Sparsity promoting recovery methods are not perfect at this 
density and may exhibit low magnitude outliers
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Why does sparsity work for this problem?: Elasticity
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Tohoku model

The combination of elasticity and effectively random GPS locations gives rise to 
a power law frequency distribution of partial derivatives.  This distribution is 

known to support sparse solutions (Davenport et al., 2011)





True signal Noisy data

Total variation 
regularization

Selection by a modified version of sparse recovery

Damped 
regularization



True signal Noisy data

Selection by a modified version of sparse recovery
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Thatcher (2009)
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Plate tectonics Continuum
model

Blocks and faults increase

Fault slip rates become small 
and comparable to each other

  Block models

Figure 3
Illustration showing the transition from global plate kinematics through continental block models to continuum models. Fault slip rates
become comparable to each other over the course of the transition. Bold lines denote major block boundary faults, and thin lines are
faults delimiting smaller blocks. Modified from Thatcher (2007).

many small blocks. These shortcomings are not always acknowledged in published work, and
evenhanded assessments of the merits of each model depend on careful evaluation of such biases
and their influence on the conclusions of any study.

However, the worth of a particular model depends on more than simply a good fit to surface
deformation data. Block and continuum models make different assumptions about rheology of
continental lithosphere, and results are often dependent on the correctness of these idealized
assumptions. Furthermore, models often have different purposes. Continuum models usually aim
to address the full problem of relating driving forces to deformation (Figure 2). Block models
have thus far been concerned only with describing the deformation of the upper crust using the
methods of plate kinematics. There is thus no simple answer to the question of which model is
better; in what follows, I briefly evaluate each model based on the objectives of each approach, its
success in achieving these goals, and its limitations.

Continuum modeling of surface kinematics is typically a prelude to dynamic modeling of whole
lithosphere deformation (e.g., England & Molnar 1997a, Flesch et al. 2000). Thus far, such models
usually assume that the lithosphere is a uniform thin viscous sheet with no lateral or depth-wise
variations in rheological properties. These idealizations keep the model conceptually simple and
provide a computationally tractable means of quantifying the forces driving and resisting motions
and relating them to observed surface deformation. An important result of these studies is the
revealed importance of internal buoyancy forces in driving continental deformation (England
& McKenzie 1982). Furthermore, a balance of forces analysis has permitted calculation of both
internal buoyancy and plate boundary driving/resisting forces and has shown that they are often
of comparable magnitude (e.g., Flesch et al. 2000). These conclusions are general because the
force balance is independent of rheology for a homogeneous and isotropic material (e.g., Fung
1965) and is probably only weakly dependent on inhomogeneities in the rheology of continental
lithosphere (e.g., Humphreys & Coblentz 2007). However, the next step, relating the estimated
forces to deformation, is only as accurate as the approximation of lithospheric rheology. Stresses
acting on a uniform thin viscous sheet produce a smoothly varying deformation field that cannot
account for discontinuous fault slip or include effects due to lateral variations in ductile rheology
caused by composition and thermal regime. A long-wavelength resemblance between the observed
and modeled velocity fields (e.g., Flesch et al. 2001) shows a general consistency with thin viscous
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Illustration showing the transition from global plate kinematics through continental block models to continuum models. Fault slip rates
become comparable to each other over the course of the transition. Bold lines denote major block boundary faults, and thin lines are
faults delimiting smaller blocks. Modified from Thatcher (2007).

many small blocks. These shortcomings are not always acknowledged in published work, and
evenhanded assessments of the merits of each model depend on careful evaluation of such biases
and their influence on the conclusions of any study.

However, the worth of a particular model depends on more than simply a good fit to surface
deformation data. Block and continuum models make different assumptions about rheology of
continental lithosphere, and results are often dependent on the correctness of these idealized
assumptions. Furthermore, models often have different purposes. Continuum models usually aim
to address the full problem of relating driving forces to deformation (Figure 2). Block models
have thus far been concerned only with describing the deformation of the upper crust using the
methods of plate kinematics. There is thus no simple answer to the question of which model is
better; in what follows, I briefly evaluate each model based on the objectives of each approach, its
success in achieving these goals, and its limitations.

Continuum modeling of surface kinematics is typically a prelude to dynamic modeling of whole
lithosphere deformation (e.g., England & Molnar 1997a, Flesch et al. 2000). Thus far, such models
usually assume that the lithosphere is a uniform thin viscous sheet with no lateral or depth-wise
variations in rheological properties. These idealizations keep the model conceptually simple and
provide a computationally tractable means of quantifying the forces driving and resisting motions
and relating them to observed surface deformation. An important result of these studies is the
revealed importance of internal buoyancy forces in driving continental deformation (England
& McKenzie 1982). Furthermore, a balance of forces analysis has permitted calculation of both
internal buoyancy and plate boundary driving/resisting forces and has shown that they are often
of comparable magnitude (e.g., Flesch et al. 2000). These conclusions are general because the
force balance is independent of rheology for a homogeneous and isotropic material (e.g., Fung
1965) and is probably only weakly dependent on inhomogeneities in the rheology of continental
lithosphere (e.g., Humphreys & Coblentz 2007). However, the next step, relating the estimated
forces to deformation, is only as accurate as the approximation of lithospheric rheology. Stresses
acting on a uniform thin viscous sheet produce a smoothly varying deformation field that cannot
account for discontinuous fault slip or include effects due to lateral variations in ductile rheology
caused by composition and thermal regime. A long-wavelength resemblance between the observed
and modeled velocity fields (e.g., Flesch et al. 2001) shows a general consistency with thin viscous
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Figure 3
Illustration showing the transition from global plate kinematics through continental block models to continuum models. Fault slip rates
become comparable to each other over the course of the transition. Bold lines denote major block boundary faults, and thin lines are
faults delimiting smaller blocks. Modified from Thatcher (2007).

many small blocks. These shortcomings are not always acknowledged in published work, and
evenhanded assessments of the merits of each model depend on careful evaluation of such biases
and their influence on the conclusions of any study.

However, the worth of a particular model depends on more than simply a good fit to surface
deformation data. Block and continuum models make different assumptions about rheology of
continental lithosphere, and results are often dependent on the correctness of these idealized
assumptions. Furthermore, models often have different purposes. Continuum models usually aim
to address the full problem of relating driving forces to deformation (Figure 2). Block models
have thus far been concerned only with describing the deformation of the upper crust using the
methods of plate kinematics. There is thus no simple answer to the question of which model is
better; in what follows, I briefly evaluate each model based on the objectives of each approach, its
success in achieving these goals, and its limitations.

Continuum modeling of surface kinematics is typically a prelude to dynamic modeling of whole
lithosphere deformation (e.g., England & Molnar 1997a, Flesch et al. 2000). Thus far, such models
usually assume that the lithosphere is a uniform thin viscous sheet with no lateral or depth-wise
variations in rheological properties. These idealizations keep the model conceptually simple and
provide a computationally tractable means of quantifying the forces driving and resisting motions
and relating them to observed surface deformation. An important result of these studies is the
revealed importance of internal buoyancy forces in driving continental deformation (England
& McKenzie 1982). Furthermore, a balance of forces analysis has permitted calculation of both
internal buoyancy and plate boundary driving/resisting forces and has shown that they are often
of comparable magnitude (e.g., Flesch et al. 2000). These conclusions are general because the
force balance is independent of rheology for a homogeneous and isotropic material (e.g., Fung
1965) and is probably only weakly dependent on inhomogeneities in the rheology of continental
lithosphere (e.g., Humphreys & Coblentz 2007). However, the next step, relating the estimated
forces to deformation, is only as accurate as the approximation of lithospheric rheology. Stresses
acting on a uniform thin viscous sheet produce a smoothly varying deformation field that cannot
account for discontinuous fault slip or include effects due to lateral variations in ductile rheology
caused by composition and thermal regime. A long-wavelength resemblance between the observed
and modeled velocity fields (e.g., Flesch et al. 2001) shows a general consistency with thin viscous
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How kinematically complex are plate boundaries?



Block1

Block 2 Block 3

Block1

Block 2 Block 3

Euler pole 2

Euler poles 1 & 2Euler pole 1

How kinematically complex are plate boundaries?

More complex 
3 fault bounded blocks 

3 Euler poles

Less complex 
3 fault bounded blocks 

2 Euler poles



144 fault bounded blocks

McClusky et al., (2001); Shen et al., (2003); Hammond and Thatcher, (2005); Williams et al., (2006); McCaffrey et al., (2007); and PBO

Selection by a modified version of sparse recovery
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Selection by a modified version of sparse recovery



How many active plates are required?

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

20

40

60

80

100

120

140

N

1000 2000 3000 4000 5000 6000 7000 8000 9000
0

2

4

6

8

10

12

14

M
R

V 
(m

m
/y

r)

 

 



The active fault system of the western US
 1

32
o W

 1
28

o W

 1
24

o W

 1
20

o W

 1
16

o W

 1
12

o W

  32oN

  36oN

  40oN

  44oN

  48oN

block velocity

 1
32

o W

 1
28

o W

 1
24

o W

 1
20

o W

 1
16

o W

 1
12

o W

elastic velocity

log10(velocity magnitude) (mm/yr)
0 0.5 1 1.5

 1
32

o W

 1
28

o W

 1
24

o W

 1
20

o W

 1
16

o W

 1
12

o W

total velocitya) b) c)

Evans and Meade, (submitted)

Block rotation InterseismicEarthquake cycle



Where are we?

1) Sparse recovery algorithms can perform some model selection and 
recovery many of the things that we’ve always been interested in 

2) Algorithm development is very rapid.  Dantzig selector (Candes et al., 
2007) 1000 times slower than spectral projection algorithm just one year 
later (Friedlander and van den Berg, 2008)!

3) Empirical conditions for successful 
recovery rapidly evolving too.
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FIG. 5. 50% recovery probability logistic regression curves with n = 211 and r = 1,10 for matrix ensembles (a) N , (b) S7, and
(c) DCT .

setting. The algorithms are extended to the row-sparse approximation setting similar to other hard
thresholding algorithms [5, 30, 58]. The algorithms were implemented by extending the Matlab (non-
GPU) version of GAGA [6]. CGIHT projected is implemented with the restarting parameter q = 3
for problem instances with d 6 0.5 and q = 10 for d > 0.5; again, these values of q were selected
based on preliminary tests and have not been tuned. For the row-sparse approximation problem, the
undersampling and oversampling ratios are again defined by d = m/n and r = k/m, respectively, since
the degrees of freedom, number of measurements, and ambient dimension are all scaled by r. In this
section, we consider a row-sparse matrix to be successfully recovered when the algorithm returns an
approximation X̂ which satisfies

kX̂ �XkF

kXkF
< 10�3. (3.6)

3.2.2 Recovery phase transition curves. The recovery phase transitions are again defined by the
logistic regression curve for the 50% successful recovery rate. Recovery phase transition curves for
both a single column (r = 1) and ten columns (r = 10) appear in Fig. 5. Due to the larger computational
burden and the current lack of a parallelized GPU implementation of these algorithms, the algorithms
were tested for n = 2048 with only fifteen values of d which are spaced in [0,1] in a similar fashion
to (3.4); in particular, five of the fifteen values of d lie from 0.01 to 0.1 in order to properly identify
the phase transition in the extreme undersampling scenario. The results presented in this section were
obtained in the same manner as those reported in [5] where the interested reader will find additional
information regarding stopping criteria and experimental set-up.

The significant increase in the area of each algorithm’s recovery regions for r = 10 compared to
r = 1 is consistent with other empirical testing; in particular the empirical recovery phase transition
curves for NIHT and CSMPSP reported here are consistent with those reported in [5]. The single
vector, r = 1, phase transition curves for the variants of CGIHT shown in Figs. 1 and 5 fall between
the phase transition curves of NIHT and CSMPSP. On the other hand, for row-sparse matrices with
ten independent columns the advantage of using CGIHT is greatly amplified. For row sparse matrices
from problem class (Mat,B) with ten columns, the recovery phase transition curves for both CGIHT
and CGIHT restarted are substantially higher than that of CSMPSP. Importantly, Fig. 5 shows that for
any reasonable undersampling ratio d < 0.75, CGIHT and CGIHT restarted have substantially larger

4) Large problems now becoming possible as 
Prony style issues are overcome.



We almost always solve underdetermined problems

model

=
data

solution



Prony had a precursor >200 years ago…

ˆf(t) =
NX

k=1

ake
bkt

cos(2⇡ckt+ dk)

Approximate signals with exponentially damped cosines (1795)

Proposed recovery algorithm only stable up to 
N = 25 and, curiously, returned estimates that 
were 50% zeros and 50% non-zeros.



Prony had a precursor >200 years ago…

ˆf(t) =
NX

k=1

ake
bkt

cos(2⇡ckt+ dk)

Approximate signals with exponentially damped cosines (1795)

Proposed recovery algorithm only stable up to 
N = 25 and, curiously, returned estimates that 
were 50% zeros and 50% non-zeros

Legendre (1795) Clear statement of least 
squares, turned out to be somewhat popular



1948 - Dantzig 
Simplex algorithm for linear programming

1973 - Claerbout and Muir 
Linear programming for sparse state vectors	
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ROBUST MODELING WITH ERRATIC DATAt 

JON F. CLAERBOUT* AND FRANCIS MUIR1 

An attractive alternative to least-squares data determined by using the median rather than the 
modeling techniques is the use of absolute value arithmetic mean. Algorithms for absolute error 
error criteria. Unlike the least-squares techniques minimization are often approximately as costly 
the inclusion of some infinite blunders along with as least-squares algorithms; however, unlike 
the data will hardly affect the solution to an least-squares, they naturally lend themselves to 
otherwise well-posed problem. An example of inequality or bounding constraints on models. 
this great stability is seen when an average is 

INTRODUCTION 

The median and the mean are two kinds of 
statistical average. In a normal situation they 
behave in about the same way. At the present 
time physical scientists almost always use the 
mean and, hence, tend to be unaware of the 
dramatic ability of the median to cast off the 
effect of blunders in the data. As an example, 
consider an expensive, all-day experiment which 
yields only one number for a result. On the first 
day, the result is 2.17, on the second day it is 
2.14, and on the third and final day it is 1638.03. 
The mean of these results is 547.78 but the me- 
dian (middle value) is 2.17. If you suspect a 
blunder on the third day you will obviously 
prefer the median. Statisticians call this the 
“robust” property of the median. 

The objective of this paper is to show how 
many kinds of geophysical data fitting can be 
made to be robust. In particular, all the calcu- 
lations we now do in solving overdetermined 
linear simultaneous equations by means of 
summed squared error minimization can be made 
robust, instead, by minimizing summed absolute 
values of errors. A computer algorithm to do this 
will be discussed. Computer time is comparable 
to that of least-squares methods. The algorithm 
solves a slightly broader class of problems than 

minimizing the summed absolute errors. Positive 
errors may be penalized with a different weight 
factor than negative errors. W’e call such an 
arrangement an asymmetric norm. A special case 
of an asymmetric norm is an inequality constraint. 
Inequalities or bounds may be applied to model 
parameters as well as measurement errors. 

Perhaps we reveal a theoretician’s bias when 
we speak of erratic dater. An experimentalist 
could with equal validity claim that the data are 
fine, but the phenomenon they represent is far 
more complex than the theoretician either wants 
or is able to model. For example, when earth- 
quakes are located by an untended computer 
which is fed from 100 telephone lines to remote 
seismometers, then the seismologist may be un- 
able to make a noise model for all the various 
peculiarities of telecommunication difficulties and 
breakdowns. With robust modeling methods, we 
can often avoid the task of making a good noise 
model. The earthquake may be properly lo- 
cated even if it knocks down some of the tele- 
phone lines. 

FIRST PRINCIPLES 

First we will see why means and medians relate 
to squares and absolute values. Let xi be an 
arbitrary number. We define m2 by the value of 

t Manuscript received by the Editor August 30, 1972; revised manuscript received January 5, 1973. 
* Stanford University, Stanford, Calif. 943Q.5. 
t Chevron Oil Field Research Co., La Habra, Calif. 90631. 
@ 1973 Society of Exploration Geophysicists. All rights reserved. 

826 

Downloaded 15 Dec 2011 to 140.247.229.45. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

Robust Modeling 837 

‘i ILL l- 
i 

$ xi 

(dl 

FIG. 13. Solutions to highly underdetermined asym- 
metric-linear norm problems where the smoothness 
criterion is taken to be minimization of the magnitude 
of (a) components of x, (b) first differences on x, (c) 
second differences on X, and (d) Chebyshev norm of .T. 

resolution is independent of the data. 1Vith 
asymmetric linear norms, the resolution is data 
dependent. 

Let us consider an example in which the resolu- 
tion becomes infinitely good if certain data values 
occur. Suppose the mass density as a function of 
radius inside a sphere is to be determined from 
the measured values of total mass, radius, and 
moment of inertia. If a data value of zero is 
found for the moment of inertia, then all the 
mass would be driven to the center of the sphere. 

be a result of the inequality constraints which 
computationally are a natural subset of as>-m- 
metric norms. The same resolution would result 
from least squares augmented by inequalit) 
constraints (quadratic programming); however, 
here again the resolution of the experiment be- 
comes data dependent. 

The Chebyshev norm L, was not recommended 
for use on geophysical data; holrever, it might 
sometimes be appropriate for smoothing geo- 
physical models. Recall that the Chebyshev norm 
of a vector (the infinite root of the sum of infinite 
powers of components) is the absolute value of 
the component of maximum magnitude. There- 
fore, \ve can easily solve L, problems with asym- 
metric linear norm methods. This \vill be illus- 
trated b,- the minimization of 

We begin by defining a new variable b (for 
biggest). We can arrange things ho that h is the 
Chebyshev norm of x by setting up the in- 
equalities 

and 

n-i-b<< - 

and then minimizing b. For the example where x 
has two components, the undcrdetermined set 
looks like 

A o 

1 0 1 

0 1 1 

1 0 -1 

0 l-l 

-0 0 x 

‘d- 

0 . 

As with LI norm-smoothing criteria, if there are 
more smoothing equations than constraint equa- 
tions, many of the smoothing equations will be 
in the final basis. This is illustrated in Figure 
13d where most of the ~~ are at the bounds b; 
typically only K would lie in between the bounds. 

In time series analysis 1Vidrolv et al (1967) 
developed a simple method for least-squares filter 
adaptation to changing input data. Their method 
becomes even simpler with the absolute value 

In this example, the high resolution appears to norm. Instead of adjusting filters by a correction 
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1984 - Karmarkar 
Interior point methods make linear and quadratic programming fast

1995 - Chen et al. 
Mathematicians start to take notice

Early CS developments



1996 - Tibshirani 
Connection to quadratic programming

2005 - Candes et al. 
Conditions for exact reconstruction,

2008 - van den Berg and Friedlander 
Fast & robust spectral gradient methods

2009 - Donoho and Tanner 
Broader recovery conditions,

Robust Uncertainty Principles:

Exact Signal Reconstruction from Highly Incomplete

Frequency Information

Emmanuel Candes
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Abstract

This paper considers the model problem of reconstructing an object from incomplete
frequency samples. Consider a discrete-time signal f 2 C

N and a randomly chosen set
of frequencies ⌦. Is it possible to reconstruct f from the partial knowledge of its Fourier
coe�cients on the set ⌦?

A typical result of this paper is as follows. Suppose that f is a superposition of |T |
spikes f(t) =

P
⌧2T f(⌧) �(t� ⌧) obeying

|T |  CM · (log N)�1 · |⌦|,

for some constant CM > 0. We do not know the locations of the spikes nor their
amplitudes. Then with probability at least 1�O(N�M ), f can be reconstructed exactly
as the solution to the `1 minimization problem

min
g

N�1X

t=0

|g(t)|, s.t. ĝ(!) = f̂(!) for all ! 2 ⌦.

In short, exact recovery may be obtained by solving a convex optimization problem.
We give numerical values for CM which depend on the desired probability of success.

Our result may be interpreted as a novel kind of nonlinear sampling theorem. In
e↵ect, it says that any signal made out of |T | spikes may be recovered by convex
programming from almost every set of frequencies of size O(|T | · log N). Moreover, this
is nearly optimal in the sense that any method succeeding with probability 1�O(N�M )
would in general require a number of frequency samples at least proportional to |T | ·
log N .

The methodology extends to a variety of other situations and higher dimensions.
For example, we show how one can reconstruct a piecewise constant (one- or two-
dimensional) object from incomplete frequency samples—provided that the number of
jumps (discontinuities) obeys the condition above—by minimizing other convex func-
tionals such as the total variation of f .

Keywords. Random matrices, free probability, sparsity, trigonometric expansions, uncertainty
principle, convex optimization, duality in optimization, total-variation minimization, image recon-
struction, linear programming.

1

(a) (b)

(c) (d)

Figure 1: Example of a simple recovery problem. (a) The Logan-Shepp phantom test
image. (b) Sampling domain ⌦ in the frequency plane; Fourier coe�cients are sampled
along 22 approximately radial lines. (c) Minimum energy reconstruction obtained by setting
unobserved Fourier coe�cients to zero. (d) Reconstruction obtained by minimizing the total
variation, as in (1.1). The reconstruction is an exact replica of the image in (a).

3

min kGm� dk2 subject to kmk1  ⌧

min kGm� dk2 subject to kmk1  ⌧

k/n < 0.01

k/n < 0.30

Growth of CS theory



2011 - Loris et al. 
Synthetic tomography

2011 - Simons et al. 
Setup for global tomography

2011 - Yao et al. 
Tohoku dominant frequencies

2012 - Evans and Meade 
Tohoku coseismic and postseismic slip

Some recent intentional CS in solid Earth geophysics



Resolution test - block

Synthetic 
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Resolution test - block

Synthetic 
slip

Smooth 
recoverya) c)b)
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Damped least squares: L2 regularization
damp oscillations

Solutions vary smoothly in space (common in various formulations) 
Classical approach with exact single step solution

min kGm� dk2 + �kmk2

So what about the other extreme; a not necessarily smooth and sparse/
compact solution?

The role of state vector regularization



Resolution test - block

Synthetic 
slip

Smooth 
recovery

Sparse 
recovery

Recovery of localized signals is possible with current GPS 
station spacing if signal is sufficiently sparse
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