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Data

Yi , background contaminated photon count in a source region over a
period of time T .

X , photon count in the exposure of pure background over T .
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Goals of the Project

1 To develop a fully Bayesian model to infer the distribution of the
brightness (luminosity function) of all the sources in a population.

2 To identify the existence of “X-ray” dark sources in the population.

“X-ray” dark sources: sources that do not generate X-rays.
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Basic Hierarchical Bayesian Model

Level I:
Yi = Si + Bi

Si
∣∣λi ∼ Poisson(rieiT λi )
Bi
∣∣ξ ∼ Poisson(aiT ξ)

X
∣∣ξ ∼ Poisson(AbT ξ)

Si (counts): number of photons from source i in the source region,
Bi (counts): number of photons from the background in the source region,
λi (counts/s/cm2): the intensity of source i ,
ξ (counts/s/pixels): the intensity of background,
t (seconds): exposure time,
ei (cm2): the telescope effective area,
ri :proportion of photons from source i expected to fall in source region,
ai (pixels): the size of source region i ,
Ab (pixels): the size of background region.

Si , Bi , λi , ξ are all unobserved/latent, t, ei , ri , ai , Ab are all known constant. Yi , X are observed data.
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Basic Hierarchical Bayesian Model

Level II:
ξ ∼ Gamma[µ0, θ0]

λi
∣∣µ, θ, πd

{
= 0 with probability πd ,

∼ Gamma[µ, θ] with probability 1− πd .

Level III: Prior on the hyper-parameters πd , µ, θ

πd ∼ Unif (0, 1)

P(µ, θ) ∝ 1

c21 + (µ− c2)2
1

c23 + (θ − c4)2
Iµ>0,θ>0,
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Model Extension I: Overlapping Sources

Some source regions overlap.
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Model Extension I: Overlapping Sources

Notation:

s is the set of indices of source regions that defines the segment. For
example, the highlighted segment is s = {1, 2, 4}.

Level I model:
Ys = Ss + Bs =

∑
i∈s
Ss,i + Bs ,

Ss,i
∣∣λi ∼ Poisson(rs,iesT λi )
Bs
∣∣ξ ∼ Poisson(asT ξ)
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Model Extension II: Different Background Intensities

In our data, the background intensity has an increasing trend from
the center to the edge of the telescope.

Projected Angle (arcmin) 0-6 6-8 8-16

Intensity (counts/pixels) 0.0010 0.0104 0.0108
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Model Extension II: Different Background Intensities

Notation:

Xk (counts): number of photons collected in background region k over T
seconds

ξk (counts/s/pixels): the background intensity in regions k

Ak (pixels): the size of background region k

Rk : the collection of source segments in the background region k

Model:

Counts in the pure background:

Xk

∣∣ξk ∼ Poisson(AkT ξk)

Counts in the source region s ∈ Rk :

Bs

∣∣ξk ∼ Poisson(asT ξk)
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Simulation Setting

Simulation Settings:

Yi ∼ Poisson(λ∗ + ξ∗), for i = 1, · · · , 1000

λ∗

{
= 0 with probability πd ,

∼ Gamma[µ∗ = 15, θ∗] with probability 1− πd .

X ∼ Poisson(2.5× 105),

θ∗, πd , ξ
∗ vary at different values:

ξ∗: 15, 30
θ∗: 50, 100, 300, 500, 1000
πd : 0, 0.1, · · · , 0.9

No overlapping sources

Homogeneous background
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Coverage Rates of 95% HPD Intervals

πd = 0.5, ξ∗ = 30, µ∗ = 15, θ∗ = 100, 500 and 1000.

9 / 22



PME and HPD Intervals Estimates of πd

100 replicate datasets for each simulation configuration.

In each cell, the three summaries are (i) coverage rate of 95% HPD
intervals, (ii) average length of intervals, (iii) root MSE
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PME and HPD Intervals Estimates of πd

ξ∗ = 15 (solid lines); ξ∗ = 30 (dashed lines)
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Hypothesis Testing for the Existence of Dark Sources

Hypothesis Testing:

H0 : πd = 0, Ha : πd > 0.

Reject H0 if the p-value is low,

p-value = P(T (D) > T obs
∣∣H0),

where D ∼ H0 and T (D) is a test statistic.

However, D
∣∣H0 is unknown because µ and θ are unknown:

λi |µ, θ,H0 ∼ Gamma[µ, θ].

Posterior predictive p-value (ppp):

ppp = P(T (D) > T obs
∣∣Dobs)

=

∫
P(T (D) > T obs

∣∣µ, θ, πd = 0)P(µ, θ|Dobs , πd = 0)dµdθ.
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Hypothesis Testing for Existence of Dark Sources

Estimation of ppp:

1 Draw (µ(t), θ(t)) from P(µ, θ
∣∣Dobs , πd = 0) for t = 1, 2, · · · ,m,

2 For each pair (µ(t), θ(t)), simulate D(t) from the null model and
calculate T (t) = T (D(t)),

3 Estimate ppp by

ppp ≈ 1

m

m∑
t=1

I
(
T (t) > T obs

)
.

Likelihood Ratio Test Statistics:

R(D) =
supµ,θ,πd La(µ, θ, πd

∣∣D)

supµ,θ L0(µ, θ
∣∣D)

,

We use T (D) = log(R(D)) as the test statistic.
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Two simplifications for the LRT:

To obtain the likelihood La(µ, θ, πd
∣∣D) or L0(µ, θ

∣∣D), we need to
integrate out all other parameters.

Pa(D
∣∣µ, θ, πd) =

∫
P(D

∣∣ξ,λ)P(ξ)Pa(λ
∣∣µ, θ, πd)dλdξ.

No close form likelihoods if some source regions overlap and ξ is
random.

Two simplifications in the calculation of likelihoods:

1 Simplification 1: Plug in Ak ξ̂kt = Xk .

Hardly changes the posterior distribution of hyper-parameters!

2 Simplification 2: Likelihoods are calculated based on non-overlapping
sources D∗: La(µ, θ, πd

∣∣D∗) and L0(µ, θ
∣∣D∗)

T (D∗) = log(R(D∗)) is still a valid statistic.
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Simulation Study: Distribution of ppp under H0
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Simulation Study: Power of the Test

∗ Based on 100 replications.
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Simulation Study: Power of the Test

ξ∗ = 15 (solid lines); ξ∗ = 30 (dashed lines)
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Simulation Study: Power of the Test

thin lines: all the data are used to calculate the test statistic
thick lines: 80% of the data are used to calculate T .
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Real Data: subsets of the Chandra/HRC-I observation of
the stellar open cluster, NGC 2516.

Dataset 1:

649 sources within 6 arcmin from the center of the field
525 non-overlapping sources
average source regions ≈ 1400 pixels
background is assumed to be spatially uniform

Dataset 2:

1169 sources within 8 arcmin from the center of the field
747 non-overlapping sources
average source regions ≈ 3847 pixels
background is assumed to be piecewise uniform (<6 and 6-8 arcmin)

data between 6-8 arcmin from the center of the field:

520 source
227 non-overlapping sources
average source regions ≈ 6900 pixels
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Real Data Analysis
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Real Data Analysis

Dataset 1: T (Dobs) = 1.181 and ppp ≈ 8.9%.

Dataset 2: T (Dobs) = 0.363 and ppp ≈ 23.2%.
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Real Data Analysis
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Real Data Analysis

If we compute the likelihoods based on the 227 non-overlapping
sources between 6-8 arcmin from the center of the field,

T obs = 0.

MCMC based on Dataset 2 MCMC based on 6-8 arcmin
ppp = 62.6% ppp = 57.3%
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