Separating image structures via graph-based seeded region growing

Minjie Fan (UC Davis)
Advisor: Thomas C.M. Lee
Collaborators: Vinay Kashyap, Andreas Zezas

November 4, 2014

(1) Introduction

(2) Method

(3) Data analysis

4 Discussion

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.

Figure: The X-ray image obtained by binning the data (in log-scale).

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.
- Shows point sources and extended sources.

Figure: The X-ray image obtained by binning the data (in log-scale).

Data description

- X-ray observatory data: spatial coordinates and energy of photons detected.
- Binning the data gives us an X-ray image.
- Shows point sources and extended sources.
- Our task: separate the structure of sources from the background.

Figure: The X-ray image obtained by binning the data (in log-scale).

Inhomogeneous Poisson process

- Assumption: the detected photons follow an inhomogeneous Poisson process with density $\lambda(y)$.
- For any set $A, N(A) \sim \operatorname{Pois}\left(\int_{A} \lambda(y) d y\right)$.
- $N(A)$: the number of photons contained in set A.

Figure: A homogeneous Poisson process (left) and an inhomogeneous Poisson process (right). (Credit: Mahling et al.)

Inhomogeneous Poisson process

- Assumption: the detected photons follow an inhomogeneous Poisson process with density $\lambda(y)$.
- For any set $A, N(A) \sim \operatorname{Pois}\left(\int_{A} \lambda(y) d y\right)$.
- $N(A)$: the number of photons contained in set A.
- We denote these photons as $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ as an realization of the Poisson process.

Figure : A homogeneous Poisson process (left) and an inhomogeneous Poisson process (right). (Credit: Mahling et al.)

Voronoi tessellation

- Imagine that there are n points on the plane.
- Divides the plane into n cells $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ such that cell C_{i} contains all locations closer to point p_{i} than to any other point.

Figure : An example of Voronoi tessellation (left) and Delaunay triangulation (right).

Voronoi tessellation

- Imagine that there are n points on the plane.
- Divides the plane into n cells $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ such that cell C_{i} contains all locations closer to point p_{i} than to any other point.
- Delaunay triangulation: the dual graph of Voronoi tessellation.

Figure : An example of Voronoi tessellation (left) and Delaunay triangulation (right).

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y)=1 / \mu\left(C_{i}\right)$, where $y \in C_{i}$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^{2} (i.e., area).

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y)=1 / \mu\left(C_{i}\right)$, where $y \in C_{i}$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^{2} (i.e., area).
- Barr et al. (2010) has shown that approximately $E(\hat{\lambda}(y))=\lambda(y)$.

Voronoi estimator

- Voronoi estimator: $\hat{\lambda}(y)=1 / \mu\left(C_{i}\right)$, where $y \in C_{i}$.
- $\mu(\cdot)$ is the Lebesgue measure on \mathcal{R}^{2} (i.e., area).
- Barr et al. (2010) has shown that approximately $E(\hat{\lambda}(y))=\lambda(y)$.
- Construct the following graph:

Figure: The graph constructed (each node has a value).

Graph-based seeded region growing (G-SRG)

- The SRG was first proposed by Adams et al. (1994).
- It is an algorithm used for image segmentation: separates an image into several regions such that each region is composed by connected pixels with similar values.
- We extend the usage of it from images to graphs.

The algorithm: step 1

- Imagine that there is a graph, and each node of it has been assigned a value.

The algorithm: step 2

- Place a set of seeds in the graph, where each seed can be a single node or a set of connected nodes.

The algorithm: step 3

- Grows these seeds into regions by successively adding neighboring nodes.

The algorithm: step 4

- Finishes when all nodes in the graph are assigned to one (and only one) region.

The growing strategy

- Implicitly assumes that nodes from the same region share similar values.

The growing strategy

- Implicitly assumes that nodes from the same region share similar values.
- In detail, it chooses the pair of a growing region and its neighboring node such that the following criterion is minimized:

$$
\delta(x, R)=\left|g(x)-\frac{\sum_{i} A\left(r_{i}\right) g\left(r_{i}\right)}{\sum_{i} A\left(r_{i}\right)}\right| .
$$

- $g(\cdot)$: a function mapping a node index to its value. r_{i} : the i-th element of region R.
$A\left(r_{i}\right)$: the area of the Voronoi cell containing r_{i}.

How to specify the seeds?

- The seeds of sources:
- Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
- Gives the location of the center of each source.

How to specify the seeds?

- The seeds of sources:
- Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
- Gives the location of the center of each source.
- We specify nearby nodes as the seeds of sources.

How to specify the seeds?

- The seeds of sources:
- Use the algorithm called Mexican-Hat Wavelet source detection (wavdetect), which is implemented in CIAO 4.6.
- Gives the location of the center of each source.
- We specify nearby nodes as the seeds of sources.
- The background seeds: they can be just specified manually.

Example one: two point sources

Figure : Region of interest (within the rectangle).

Figure: Region of interest after zooming in.

Example one: two point sources (cont.)

Figure: Graph constructed by Delaunay triangulation (after log transformation).

Figure: Seeds specified by wavdetect (three red dots).

Example one: two point sources (cont.)

Figure: Result of G-SRG (clustering of photons)

Figure: Result of G-SRG (clustering of Voronoi cells)

Example two: two embedded point sources in a field of structured extended emission

Figure: Region of interest (within the rectangle).

Figure : Region of interest after zooming in.

Example two: two embedded point sources in a field of structured extended emission (cont.)

Figure: Graph constructed by Delaunay triangulation (after log transformation).

Figure : Seeds specified by wavdetect (four red dots).

Example two: two embedded point sources in a field of structured extended emission (cont.)

Figure: Result of G-SRG (clustering of photons)

Figure: Result of G-SRG (clustering of Voronoi cells)

Pros and Cons

- Pros:
- Robustness: the result is not affected by the parameters, e.g., the bin size and the location of the background seeds.
- Fast computation: the computational speed depends on the number of photons. The time complexity of Voronoi tessellation is $O(n \log n)$. The time complexity of G-SRG is at most $O\left(n^{2}\right)$. (On macbook, 10 seconds for $n=1500$.)

Pros and Cons

- Pros:
- Robustness: the result is not affected by the parameters, e.g., the bin size and the location of the background seeds.
- Fast computation: the computational speed depends on the number of photons. The time complexity of Voronoi tessellation is $O(n \log n)$. The time complexity of G-SRG is at most $O\left(n^{2}\right)$. (On macbook, 10 seconds for $n=1500$.)
- Cons:
- G-SRG is an ad-hoc method, which lacks a theoretical support.
- It requires the specification of the seeds of sources, which affects the outcome of G-SRG significantly.

References I

E. R. Adams and L. Bischof.

Seeded region growing.
IEEE Trans. Pattern Anal. Mach. Intell., 16(6):641-647, June 1994.
E. C. D. Barr and F. P. Schoenberg.

On the voronoi estimator for the intensity of an inhomogeneous planar poisson process.
Biometrika, 97(4):977-984, 2010.
(H. Ebeling and G. Wiedenmann.
Detecting structure in two dimensions combining voronoi tessellation and percolation.
Phys. Rev. E, 47:704-710, Jan 1993.

References II

围 P. E. Freeman, V. Kashyap, R. Rosner, and D. Q. Lamb.
A wavelet-based algorithm for the spatial analysis of poisson data. The Astrophysical Journal Supplement Series, 138(1):185, 2002.

