Adding a new dimension: multivariate studies of X-ray Binaries

Saku Vrtilek (CfA), Luke Bornn (Harvard), Bram Boroson (CSU), Joey Richards (LLNL)

2

Putting X-ray binaries in their proper place.

Introduction: X-ray binaries Data set CCI description

Physical interpretations

Statistical solutions (Luke)

Future work

What are X-ray binaries?

Jet X-ray heating Accretion disc Hot spot Hot corona Accretion Companion Disc wind stream star .R. Aynes 2001

Quasars and microquasars show direct correlation between kinetic power and γ -ray luminosity over 10 orders of magnitude! Nemmen et al. 2012

http://hera.ph1.uni-koeln.de/~heintzma

 $\tau \approx R_{\rm S}/c \sim M$

Mirabel et al 1994 Nature front page

GRS1915+105: First XRB system observed to show prominent relativistic jets

Why Study X-ray Binaries?

- Efficient matter to energy converters
- Study matter at extreme conditions
- Contain endpoints of stellar evolution
- Most nearby, easily studied example of accretion processes and disk/jet interaction

RXTE/ASM: 15 year light curves

Neutron star systems

Black hole systems

Spectra of X-ray binaries

Neutron star systems

Black hole systems

Dejenaar, Wijnands, & Miller 2013

Miller, Homan, & Miniutti 20069

RXTE PCA lightcurves and color-color diagrams of GRS1915+105

1s bins; 1 hour intervals; HR1= (5-13keV)/(2-5keV); HR2=(13-60keV)/(2-5keV) Belloni et al 2000⁰

Black hole system GRS 1915+105 Belloni et al 2000

Neutron star "Z" and "Atoll" systems Homan et al 2010

Putting X-ray binaries in their proper place.

Introduction: X-ray binaries →Data set CCI description

Physical interpretations

Statistical solutions (Luke)

Future work

3 scanning shadow cameras each with a collecting area of 30 $\rm cm^2$

Covers 80% of sky every 90 minutes

Sensitivity: 30 mCrab

3 energy bands covering 1.3-12 keV

Over 15 years of data available on about 500 sources.

CCI Diagrams

Soft Color HR1 = (3-5keV)/(1.3-3keV) Hard Color HR2 = (5-12keV)(1.3-3keV) Intensity = 1.3-12keV counts (scaled from 0-1)

RXTE/ASM data: One day averages over 13 y

Color-Color-Intensity Diagrams

- **C** HR1 = (3-5keV)/(1.3-3keV)
- C I HR2 = (5-12keV)(1.3-3keV)
- I Intensity = 1.3-12keV counts (Intensity normalized to top 1%) (Only $\geq 5\sigma$ points plotted)

RXTE/ASM data: One day averages over 13 years

> Black holes high mass Black holes low mass Pulsing neutron stars Non-pulsing neutron stars

Vrtilek & Boroson 2013

UNUSUALLY SOFT X-RAY SPECTRUM OF LMC X-3

White & Marshall 1984

Color-Color-Intensity Diagrams

- **C** HR1 = (3-5keV)/(1.3-3keV)
- C I HR2 = (5-12keV)(1.3-3keV)
- I Intensity = 1.3-12keV counts (Intensity normalized to top 1%) (Only $\geq 5\sigma$ points plotted)

RXTE/ASM data: One day averages over 13 years

> Black holes high mass Black holes low mass Pulsing neutron stars Non-pulsing neutron stars

Vrtilek & Boroson 2013

Optical Color + Optical Luminosity

X-ray color + X-ray luminosity

A Hertsprung-Russell diagram for accreting binaries?

Black holes high mass Black holes low mass Pulsing neutron stars Non-pulsing neutron stars

Vrtilek & Boroson 2013

Spectral Connectivity Analysis

Input data

Richards et al (2008; 2009) Freeman et al (2009) Lee & Waterman (2010)

Data clustered by

diffusionMap: http://cran.r-project.org/web/packages/diffusionMap/index.html

Pulsars vs Z-sources

Input data colored by prior knowledge clusters

Data colored by diffusionMap

Sco X-1, Cen X-3

Pulsars vs Black Holes

Input data colored by prior knowledge

Data colored by diffusionMap clusters

Z sources vs Atoll sources

Input data colored by prior knowledge clusters

Data colored by diffusionMap

Different states of a single source: Cygnus X-1

(Hard state, intermediate state, and soft state of Cyg X-1 in ASM determined using 2741 spectral fits to PCA data)

PCA data of Cyg X-1 clustered by diffusionMap

Buchan et al 2013

Grinberg et al. 2013

Separating Black holes and Z sources?

Is Sco X-1 equivalent to the intermediate state of Cyg X-1?

Different approach: see Luke's presentation!

Different states of a single source: Cygnus X-1

(Hard state, intermediate state, and soft state of Cyg X-1 in ASM determined using 2741 spectral fits to PCA data)

Grinberg et al. 2013

Problems with diffusionMap code:

- 1) optimized for selection by redshift;
- 2) critically dependent on number of groups and spacing between groups.

Different approach: see Luke's presentation!

32

32

Putting X-ray binaries in their proper place.

Introduction: ✓X-ray binaries ✓Data set ✓CCI description

→ Physical interpretations

Statistical solutions (Luke)

Future work

Incorporating the Physics

Cyg X-1 Cyg X-3 Circinus X-1 XTE J1550-564 Sco X-1 GROJ1655-40 GRS 1915+105 GX339-4

Resolved jet sources X-ray pulsars

Incorporating the Physics

Resolved jet sources X-ray pulsars

If $P_B < P_p$ field lines spiral

 $P_{\rm B} = B^2/8\pi$ $P_{\rm p} = \varrho v^2$

Condition for jet formation is that

 $R_A/R_* = 1$ for NS

 $R_A/R_{LSO} = 1$ for BH

 $P_{\rm B} = P_{\rm P}$ at the Alfven radius

 $M_{dot} = 4\pi R^2 \varrho v \text{ (Longair 1994)}$ v = (2GM_{*}/R)^{1/2} For a dipole magnetic field: B/B_{*} = (R_{*}/R)³

 $R_A/R_* \approx 0.87 \ (B_*/10^8G)^{4/7} (M_{dot}^{10^{-8}}M_{sun}^{-2/7})^{-2/7}$

For a NS with a mass 1.44M and radius of 9km (Titarchuk & Shaposhnikov 2002) sun

Fender et al model for jet production in XRBs

From most likely to least likely to produce jets:

Black hole systems with no intrinsic magnetic field.

Low-mass neutron star systems with weak magnetic fields at high accretion (Z-type)

Low-mass neutron star systems with weak magnetic fields at low accretion (Atoll)

High-mass neutron star systems with high magnetic fields (Pulsars)

Fender, Belloni, & Gallo (2004)

$R_A/R_{LSO} = 1$

Schwarzschild-BH XRBs

Kerr-BH XRBs

Massi & Bernado 2008

Homan et al 2010 claim M_{dot} increases from Atoll to Z sources. And bursters are thought to be at very low Mdot.

CCI diagram incorporate ALL key elements that determine interplay between jet power and disk radiation:

- 1. Mass accretion rate which determines available energy
- 2. Strong magnetic fields which inhibit jet formation
- 3. Basic condition for jet formation $(R_A/R_{lso} = 1)$

- 1. Mass accretion rate determines available energy
- 2. Strong magnetic fields inhibit jet formation
- 3. ISCO is related to jet power

McClintock, Narayan, & Steiner 2013

44

44

Putting X-ray binaries in their proper place.

Introduction: X-ray binaries Data set CCI description

Physical interpretations

Statistical solutions (Luke)

→ Future work

Individual sources with better resolution

PCA Data of GRS1915+105 Belloni states

X-ray binaries in external galaxies: NGC4649

Cyg X-3 Kalkonen states

Chandra ACIS data from Dong-Woo Kim and Pepi Fabbiano

Chandra grating data from Mike McCollough

MAXI data

Freshwater et al 2013

Cyg X-1

Cyg X-1, LMC X-1, LMC X-3

Slit camera with a collecting area of 5000 cm².

90-98% of sky every 96 minutes.

Sensitivity: 3 mCrab

Energy range: 0.5-30 keV

Resolution: 18% at 6 keV)

Monitoring over 1000 sources.

What we are working on. . .

Defining geometric loci for classification of unknown objects.

Identifying the physics that drives objects to specific locations in CCI

Quantifying the disk-jet connection:

When will an accreting neutron star become a microquasar rather than a pulsar?

When will a black hole X-ray binary evolve into a microquasar phase?

Studying states within a given object (need better resolution data)

Studying populations in other galaxies.

Expanding to other databases, instruments, and object classes.

http://hera.ph1.uni-koeln.de/~heintzma/U1/MIV_microq.htm

XRB classification scheme

Binary systems containing black holes:* Dynamically well determined with massive companions Dynamically well determined with low-mass companions Black hole candidates **Binary systems containing neutron stars:**** Systems with high mass companions **Pulsars** Non-pulsing Systems with low mass companions **Pulsars** Non-pulsing Z-sources Atolls **Bursters**

*From Remillard & McClintock 2006 **Liu, van Paradijs, & van den Heuvel 2000,2001

Sample heirarchical clustering schemes.

Capturing geometries

Richards et al (2008)

Spectral Connectivity