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the problem

I we deal with high-spectral/high-temporal resolution
grating data

I these data are obtained as lists of photons
I for each photon we know

1. the time at which it was recorded (t)
2. its wavelength (w) and hence its energy (E)

I one interesting question: does the distribution of energy
change over time?
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two typical data sets
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preprocessing: binning the data

I as a first step, we “bin” the data
I i.e., lay a grid over the data and count how many points in

each grid box
I Poisson counts in each grid box (or bin)
I size of grid/bin: needs to be carefully chosen
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binned data sets
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poisson modeling

I each bin is indexed by two quantities:
1. t: time
2. w: wavelength

I denote the observed counts as C(t,w)

I denote the brightness of a source as µ(t,w) (expected
counts per unit area)

I

C(t,w) ∼ Poisson

{
δt× δw× µ(t,w)

K∑
k=1

Ak(w)

}
K: number of detectors; Ak(w): effective area for the kth
detector (all known)
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about µ(t,w)

I no simple parametric models, so do nonparametric
I which typically requires smoothness assumption
I with emission lines, µ(t,w) is not completely smooth
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modeling of µ(t,w)

I for now assume µ(t,w) is the same for all t
I i.e., homogeneous across time
I and model the energy spectrum µ(w)

I split µ(w) into two parts: smooth part + emission lines
1. smooth part: radial basis expansion

(use polynomial of power 3: 1, x, x2, x3, |x− “knots”|3)
2. emission lines: delta functions
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model for µ(w)

I

g(µ(w)) =

P∑
j=1

βjbj(w) +

n∑
i=1

ηiIi(w)

I g: link function as in GLM/GAM, for Poisson data
I P: number of basis functions, pre-specified
I bj: the jth basis (radial basis)
I n: number of bins in the w-direction
I Ii: delta function
I βj’s and ηi’s: parameters to be estimated
I note: number of parameters > number of observations
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parameter estimation

I

g(µ(w)) =

P∑
j=1

βjbj(w) +

n∑
i=1

ηiIi(w)

I need to set some βj’s and ηi’s to zero
I do L1 penalty (lasso)
I given tuning parameters γ and ρ, estimate β and η by

minimizing

−log likelihood + γ {ρ|β|1 + (1− ρ)|η|1}

I fast algorithms exist
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selecting the tuning parameters

I need to choose γ and ρ
I in classical lasso, they can be chosen say by

cross-validation, AIC or BIC
I cross-validation: too slow
I AIC/BIC: cannot be blindly used here, as “p > n”
I see Chen and Chen (2008, Biometrika), where an Extended

BIC criterion is proposed to handle the “p > n” issue
I we follow the idea and developed an Extended MDL

criterion (Minimum Description Length)
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an example (without emission lines)
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incorporating time t in modeling

I the energy spectrum typically changes over time
I as a first step, we do piecewise modeling of µ(t,w)

I i.e., µ(t,w) is the same between any two breakpoints:

µ(t,w) = µ1(w)I{t0≤t<t1}

+ µ2(w)I{t1≤t<t2}

+ . . .

+ µB(w)I{tB−1≤t<tB}

I the number of breakpoints B, and the locations of the
breakpoints tj’s, are unknown
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selecting B and tj’s

I it is a model selection problem
I MDL has been proven to be very successful in various

structural break detection problems
I again, we are in the “p > n” scenario
I so direct application of classical MDL won’t work here
I as before, we developed an Extended MDL criterion for

choosing the final model
I (essentially a penalized likelihood, with 4 penalty terms)
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practical fitting

I involves a non-trivial minimization problem
I a possibility is genetic algorithms
I but slow
I we use a “tree growing” strategy
I i.e., at each time step, choose the best location for adding

one breakpoint, repeat until a local minimum is found
I (we could certainly do “tree pruning”, and more)
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break detection simulation 1
1 true break, with 200 repetitions
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break detection simulation 2
2 true breaks, with 200 repetitions
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real data set 1
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real data set 1
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real data set 2
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real data set 2
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concluding remarks

I presented a method for detecting changes of energy
spectrum over time

I modern regression techniques and new model selection
criteria are used

I future work:
1. better modeling in t
2. theoretical properties of Extended MDL
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The end.
Thank you.
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