Using Bayes Factors for Model Selection in High-Energy Astrophysics

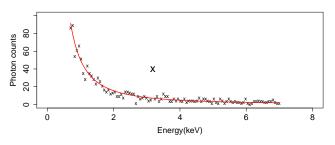
Shandong Zhao

Department of Statistic, UCI

April, 2013

Model Comparison in Astrophysics

Nested models (line detection in spectral analysis):



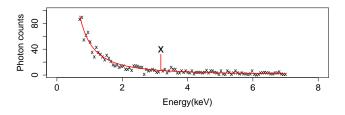
- Non-nested models: Powerlaw vs Bremsstrahlung for the red curve.
- ▶ Bottom line: need more than a confidence interval on "nesting parameter" to formally compare or select a model.

Spectral Analysis in High Energy Astrophysics

- ▶ Goal: Study the distribution of the energy of photons originating from a source (We use a Poisson model)
- The photon detector
 - 1. Counts photons into energy bins, with energy E_1, \ldots, E_J .
 - May misclassify photons into wrong energy bins. (*Redistribution Matrix*, M)
 - 3. Has sensitivity that varies with energy. (*effective area, d*)
 - 4. Is subject to **background contamination**, θ^B
- ▶ Mathematically: $\Xi(E_i) = \sum_{j \in \mathcal{J}} M_{ij} \Lambda(E_j) d_j + \theta_i^B$
- We ignore 2-4 in our initial simulations.

Model Selection in Spectral Analysis

The spectral model can often be formulated as a finite mixture model. A simple form consists of a continuum and an emission line: Λ(E_i) = αE_i^β + ωI_{u==i}



▶ The line detection problem:

$$H_0: \Lambda(E_i) = \alpha E_i^{\beta}$$

$$H_a: \Lambda(E_i) = \alpha E_i^{\beta} + \omega I_{\mu==i}$$

Challenges with Spectral Model Selection

- A naive method is to use the likelihood ratio test. However, the standard asymptotics of the LRT statistic do not apply.
 - μ has **no value** under H₀.
 - ω must be non-negative under H_a while its target tested value under H₀, zero, is on the boundary of the parameter space.
- For "precise null hypotheses", p-values bias inference in the direction of false discovery.
 - ▶ When compared to BF or $Pr(H_0|Y)$, *p*-values *vastly overstate the evidence* for H_1 (even using the prior most favorable to H_1)
 - Computed given data as extreme or more extreme than Y, which is much stronger evidence for H₁.
- Protassov et al. (ApJ, 2002) address the first set of concerns by simulating the null dist'n of the Likelihood ratio statistic and use posterior predictive p-values (PPP) instead.

Bayesian Model Selection

▶ **Bayesian Evidence:** The average likelihood over the prior distribution of the parameters under a specific model choice:

$$p(\mathbf{Y}|M) \equiv \int p(\mathbf{Y}|M,\theta)p(\theta|M)d\theta$$

where Y, θ and M are the observed data, parameters, and underlying models respectively.

► Bayes Factor (BF): The ratio of candidate model's Bayesian Evidence:

$$B_{01} \equiv \frac{p(\mathbf{Y}|M_0)}{p(\mathbf{Y}|M_1)}$$

Interpretation of BF

BF and posterior probability ratio.

$$\frac{p(M_0|\mathbf{Y})}{p(M_1|\mathbf{Y})} = B_{01} \frac{p(M_0)}{p(M_1)}$$

Interpretation against the Jeffreys' scale.

BF	Strength of evidence (toward M_0)
1 ~ 3	Barely worth mentioning
$3\sim 10$	Substantial
$10\sim30$	Strong
$30\sim 100$	Very strong
> 100	Decisive

Disadvantage of the Bayes Factor

- Assumes that one of the two models is true.
- Computation could be hard.
- Sensitive to prior specification.
 How does the prior dependency of BF compare to that of PPP?
- BF is ill-defined with an improper prior.
 Non-informative prior for parameters in common?

The Computation of BF

- ► Task is to compute $p(Y|M) \equiv \int p(Y|M,\theta)p(\theta|M)d\theta$.
 - Gaussian Approximation.
 If the posterior dist'n is approximately Gaussian.
 - Monte Carlo Method.
 If could get a sample from either the prior or posterior dist'n.
 - Nested Sampling.
- None of the method is perfect for spectral analysis.
 - The joint posterior dist'n has many local modes.
 - Most Monte Carlo methods are inefficient.
 - Nested Sampling has bias up to 25% in simulation studies.

A New Method

- ▶ On the other hand, $B_{01} = \frac{p(M_0|\mathbf{Y})}{p(M_1|\mathbf{Y})} / \frac{p(M_0)}{p(M_1)}$
- Computing the ratio of the posterior probability is not easy.
- ▶ Challenge is to sample from $(I_{M_0}, \Theta_0, I_{M_1}, \Theta_1)$, where Θ_0 and Θ_1 might have different parameter settings and dimensions.

Example: Θ_0 for Powerlaw while Θ_1 for Bremsstrahlung.

▶ It's usually straightforward, however, to sample from $p(\Theta_0|M_0, Y)$ and $p(\Theta_1|M_1, Y)$, seperately.

Jump between the Parameter Space

Assume we run 2K MCMC chains with half of them starting from Θ_0 and Θ_1 respectively. The parameter space for each chain is (I_M, Θ_M) .

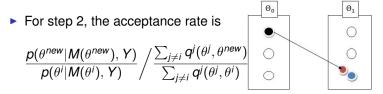
- 1. Run usual M-H algorithm for each chain with $q_0(\theta_0^{old}, \theta_0^{new})$ and $q_1(\theta_1^{old}, \theta_1^{new})$ being the proposal dist'n for sampling within $p(\Theta_0|M_0, Y)$ and $p(\Theta_1|M_1, Y)$, respectively.
- 2. For chain *i*, randomly pick one of the other chains, *j*, and propose a new draw based on its corresponding proposal dist'n. Doing so is equivalent to use the proposal dist'n of:

$$\frac{1}{K-1}\sum_{j\neq i}q^j(\theta^j,\theta^{new})$$
, where $q^j(\theta^j,\theta^{new})=0$ if $I_M(\theta^j)\neq I_M(\theta^{new})$

3. Combine all the chains, compute the ratio of I_{M_0}/I_{M_1} as the Monte Carlo estimate of the posterior probability ratio.

Why It Works

The parallel MCMC algorithm was first introduced to help MCMC chain jump between modes.



Challenge now is to find a good local proposal dist'n.

Is Improper Prior Always Improper?

▶ If θ^* only shows up in M_1 , using improper prior for θ^* is improper.

$$p(\mathbf{Y}|M_1) \equiv \int p(\mathbf{Y}|\theta^{\star}, \tilde{\theta}) p(\tilde{\theta}|\theta^{\star}) p(\theta^{\star}) d\tilde{\theta} d\theta^{\star}, \ \Theta^{1} = (\theta^{\star}, \tilde{\theta})$$

• What if θ^* is one of the parameters in common? In the line detection problem with β, μ being fixed and assuming $p(\frac{\omega}{\alpha}) \sim U(0, \eta)$,

$$H_0: \Lambda(E_i) = \alpha E_i^{\beta}$$
 vs $H_a: \Lambda(E_i) = \alpha E_i^{\beta} + \omega I_{\mu==i}$

The BFs under the prior of $p(\alpha) \sim U(0, N)$ converge as $N \to \infty$, to the BF under the prior of $p(\alpha) \propto 1$.

▶ What about the priors for ω and μ ?

The Example

If $p(\alpha) \propto 1$,

$$BF = \eta \bigg/ \int_0^\eta rac{\left(1 + ilde{\omega}/E_\mu^{-eta}
ight)^{\mathsf{Y}_\mu}}{\left(1 + ilde{\omega}/\Sigma E_i^{-eta}
ight)^{\Sigma \mathsf{Y}_i + 1}} d ilde{\omega}$$

If $p(\alpha) \sim U(0, N)$,

$$BF_{N} = \eta \bigg/ \int_{0}^{\eta} \frac{\left(1 + \tilde{\omega}/E_{\mu}^{-\beta}\right)^{\tau_{\mu}}}{\left(1 + \tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \frac{\Pr(\tilde{z} \leq N)}{\Pr(z \leq N)} d\tilde{\omega}$$

where $z \sim \text{Gamma}(\Sigma Y_i + 1, \frac{1}{\Sigma E_i^{-\beta}}), \tilde{z} \sim \text{Gamma}(\Sigma Y_i + 1, \frac{1}{\Sigma E_i^{-\beta} + \tilde{\omega}})$

The Example, cont'd

Because

$$\frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) \leq \frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}}$$

$$\lim_{N \to \infty} BF_{N} = \lim_{N \to \infty} \int_{0}^{\eta} \frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) d\tilde{\omega} / \lim_{N \to \infty} \Pr(z \leq N)$$

$$= \int_{0}^{\eta} \lim_{N \to \infty} \frac{\left(1+\tilde{\omega}/E_{\mu}^{-\beta}\right)^{Y_{\mu}}}{\left(1+\tilde{\omega}/\Sigma E_{i}^{-\beta}\right)^{\Sigma Y_{i}+1}} \cdot \Pr(\tilde{z} \leq N) d\tilde{\omega}$$

$$= BF$$

where the second "=" holds by Lebegue dominated convergence theorem.

How to Assign a Proper Prior

- ▶ Compared to α and β , priors for ω and μ have much more influence on the BF. And they have to be proper.
- ▶ Different priors on ω and μ can totally change your decision based on BF. For example, with everything else held the same, under $p(\mu) \sim N(\mu_0, \sigma_1)$, BF supports M_0 under $p(\mu) \sim N(\mu_0, \sigma_2)$, BF can't distinguish btwn the models under $p(\mu) \sim N(\mu_0, \sigma_3)$, BF supports M_1
- Is the prior dependency always a problem?
- How does the prior influence of BF compare to that of the PPP?

Simulation Study Design

Simulation Models: We compare a power law continuum with one delta function emission line model, with 1000 energy bins equally spaced between 0.3 to 7(keV).

$$H_0: \Lambda(E_i) = \alpha E_i^{\beta}$$
 $H_a: \Lambda(E_i) = \alpha E_i^{\beta} + \omega I_{\mu==i}$

with $i = 1 \sim 1000$ and $\alpha = 50, \beta = 1.69$.

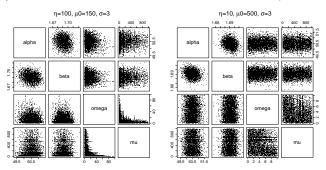
- ▶ The prior influence of α and β are negligible compared to that of ω and μ . Thus, they will be fixed in the simulation study.
- Assume:

$$\omega \sim U(0, \eta); \mu \sim \text{discrete}[N(\mu_0, \sigma^2)]$$

Using a Gamma prior for ω will have similar results.

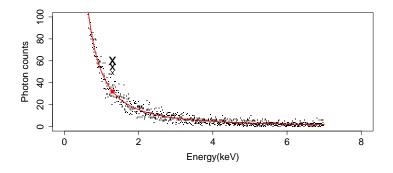
The Non-Gaussian Posterior Dist'n

- ▶ The ordinary Gibbs breaks down here because the subchain for μ does not move from its starting value, regardless of what it is. We use the **PCGS** to draw posterior samples.
- ▶ 5000 posterior draws with $\alpha = 50, \beta = 1.69, \omega = 10, \mu = 150.$



To Study The Prior Influence

- Fix α and β throughout. Calculate BF by numerical integration.
- ▶ The "true" emission line is set at bin 150, or $\mu = 1.3$ keV.
- ▶ The intensity from the continuum in this bin is **32**.
- We control the strength of data support toward H_a by altering the observed counts at 1.3 keV.



Prior Settings

- ▶ Recall $\omega \sim U(0, \eta)$. We control its strength by changing its upper range η .
 - η will range from 10 to 108 with a step size of 2.
- ▶ For μ , because $\mu \sim \text{discrete}[N(\mu_0, \sigma^2)]$, we control both its mode μ_0 and s.d σ .
 - ▶ We use two different value for μ_0 , 1.3keV and 1.97keV respectively (150 and 250 in terms of bin number).
 - ▶ For σ , it will range from 1 to 99 (bin width) with a step size of 2.

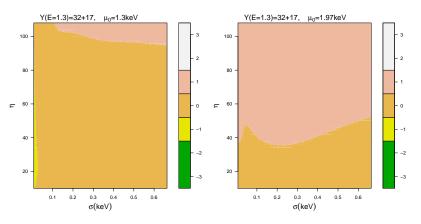
Visualize The Prior Influence

We will plot the heatmap of log(BF) against η , μ_0 , and σ on the simplified Jeffrey's scale.

BF	log(BF)	Evidence
> 30	> 1.5	Very strong to overwhelming for H_0
[3, 30]	[0.5, 1.5]	Substantial to strong for H_0
[-3, 3]	[-0.5, 0.5]	Not worth mentioning
[-30, -3]	[-1.5, -0.5]	Substantial to strong for H_a
< -30	< -1.5	Very strong to overwhelming for H_a

Results: A Weak Spectral Line

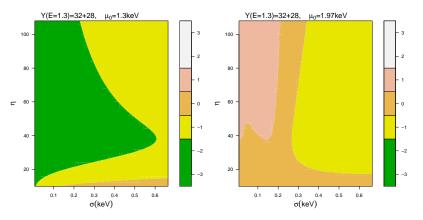
Y(E = 1.3) is about 3 s.d above null model intensity.



Diffuse or misplaced priors weaken evidence

Results: A Stronger Spectral Line

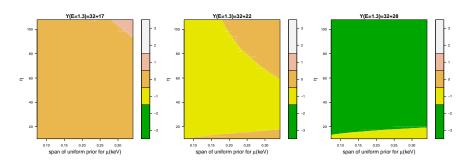
Y(E = 1.3) is about 5 s.d above null model intensity.



Diffuse or misplaced priors could completely change the decision

Results: Stronger Prior

We use a stronger prior for μ : uniform prior with a span of 11 \sim 51 bin width centered at the true location.



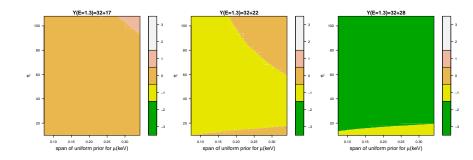
Take Home Messages

- If the data is dominantly strong, we probably don't need BF.
- The priors can reflect different scientific questions
 - $p(\mu)$: where to look for the lines
 - $p(\omega)$: how strong are the lines that we're looking for
- Even for likelihood ratio test, looking for lines
 - at a fixed bin location.
 - within a restricted region,
 - over the whole energy range

will return tests with varied strength of the evidence.

▶ How does the prior dependency of BF compared to the PPP?

Compare BF with P-values



ppp-values (based on 1000 MC samples)

Y(E=1.3keV)	32+17	32+22	32+28
H _A : known line location	0.008	0.002	0.000
H_A : fitted line location(0.3-7.0keV)	0.539	0.184	0.006

Compare BF with P-values, cont'd

Prior on line intensity: $\omega \sim U(0, \eta)$ *and* $\mu \sim U(1.3 \pm \kappa)$.

 H_A : known line location

▶ ppp-value = 0.002.

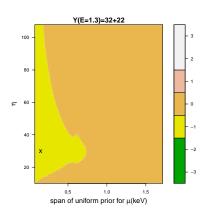
 H_A : *Unknown* line location

▶ ppp-value = 0.184.

minimum Bayes Factor = 0.044 (span=0.07, η = 30)

Both ppp-value and Bayes Factor depend on where we look for line.

Can we calibrate the dependence?



Compare BF with P-values, cont'd

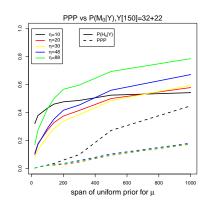
Assuming $P(M_0)/P(M_1) = 1$, we plot the PPP against $P(M_0|Y)$

Evidence decreases with more diffuse prior, for both.

BFs are more conservative.

Prior on μ

- let's decide where to look,
- penalize us for looking too many place. i.e., look elsewhere effect
- Sensitivity of BF to prior for μ is sensible.



A Bayesian Strategy for Line Search, Summary

Bayes Factors for Detection:

$$\mathsf{BF} = \frac{p_0(Y)}{p_A(Y)} = \frac{\int p(Y|\theta, \omega = 0)p(\theta)d\theta}{\int p(Y|\theta, \mu, \omega)p(\theta, \mu, \omega)d\theta d\mu d\omega}$$

Setting priors

 $\theta = (\alpha, \beta)$: Non-informative / diffuse priors.

 μ : Where we want to look for the line.

 ω : How strong of a line do we want to look for?

Narrower prior ranges yield stronger results.

If strong lines are easy to see, maybe we can confine attension to weak lines.

The Quasar PG 1634+706

Simulate three datasets based on the Quasar (obs47).

- source model: xsphabs*(powlaw1d+delta1d)
- use the ARF/RMF associated with obs47.
- ► nH = 0.064, pl.ampl = 0.00043, pl.gamma = 1.99. (sherpa fit for obs47).
- exposure= 5000 (obs47 has exposure= 5389.08).
- no background contamination.
- ► dl.pos = 2.88 (powlaw amplitude here= 0.00005).
- \rightarrow dl.ampl = 0.000005, 0.00001, 0.000025

Prior Setup

- ▶ When computing the BF for the real data, fix nH, bkg.factor at their sherpa fitted value.
- ► For the simulated data, fix *nH*, *pl.ampl*, *pl.gamma*.
- For the priors,
 - ▶ pl.ampl ~ U(0, 0.001)
 - ▶ pl.gamma ~ U(0, 10)
 - ▶ $dl.pos \sim TN|_{>1}$ (2.88, sd), where $sd = n \cdot 0.025$
 - $dl.ampl \sim U(0, \eta)$, where $\eta = 0.000005 + n \cdot 0.000065/4$
 - n = 0, 1, 2, 3, 4

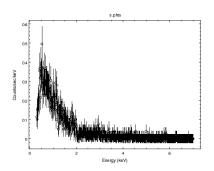
Visualize The Prior Influence

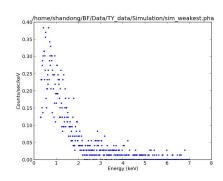
We will plot the heatmap of log(BF) on the simplified Jeffrey's scale.

BF	log(BF)	Evidence
> 30	> 1.5	Very strong to overwhelming for H_0
[3, 30]	[0.5, 1.5]	Substantial to strong for H_0
[-3, 3]	[-0.5, 0.5]	Not worth mentioning
[-30, -3]	[-1.5, -0.5]	Substantial to strong for H_a
< -30	< -1.5	Very strong to overwhelming for H_a

Data Visualization

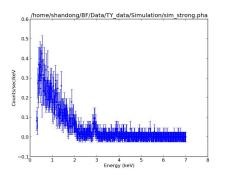
The real data and the weakest simulated case.

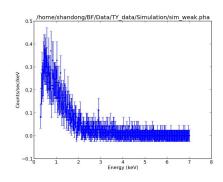




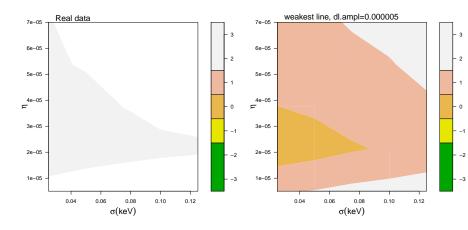
Data Visualization, Cont'd

The strongest and modest simulated case.



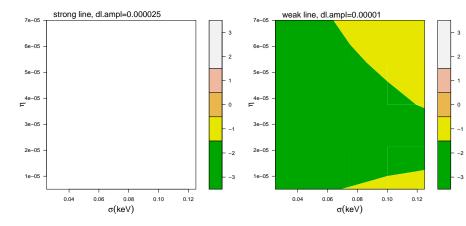


BF and PPP



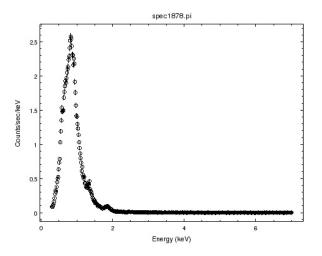
Real	Weakest
0.82/0.09	0.505
0.01	0.065
	0.82/0.09

BF and PPP, Cont'd



Strong	Modest	
0.42	0.535	
0.0	0.02	
	0.42	

Another Data: D1878



Scientific question and prior setups for this dataset?