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Data

Yi , background contaminated photon counts in a source exposure
over T = 48984.8 seconds (13.6 hours),

X , photon counts in the exposure of pure background over T seconds.
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Goals of the Project

1 To develop a fully Bayesian model to infer the distribution of the
intensities of all the sources in a population.

2 To identify the existence of dark sources in the population.
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Basic Hierarchical Bayesian Model

Level I:
Yi = Si + Bi

Si
∣∣λi ∼ Poisson(rieiTλi )
Bi
∣∣ξ ∼ Poisson(aiT ξ)

X
∣∣ξ ∼ Poisson(AT ξ)

Si (counts): number of photons from source i in the source region,
Bi (counts): number of photons from the background in the source region,
λi (counts/s/cm2): the intensity of source i ,
ξ (counts/s/pixels): the intensity of background,
T (seconds): exposure time, T = 48984.8,
ei (cm2): the telescope effective area,
ri :proportion of photons from source i expected to fall in source region,
ai (pixels): the size of source region i ,
A (pixels): the size of background region.

Si , Bi , λi , ξ are all unobserved/latent, T , ei , ri , ai , A are all known constant. Yi , X are observed data.
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Basic Hierarchical Bayesian Model

Level II:
ξ ∼ Gamma(α0, β0)

λi
∣∣α, β, πd

{
= 0 with probability πd ,

∼ Gamma(α, β) with probability 1− πd .

Level III: Prior on the hyper-parameters πd , µ =
α

β
, θ =

α

β2

πd ∼ Unif (0, 1)

P(µ, θ) ∝ 1

c21 + (µ− c2)2
1

c23 + (θ − c4)2
Iµ>0,θ>0,
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Model Extension I: Overlapping Sources

Notation:

O = {i1, · · · , ik} indicates the region formed by the overlap of source
i1, · · · , ik . For example, O1 = {1, 2, 4},O2 = {1}.
O: the collection of all such regions.

Level I model:
Yo = So + Bo =

∑
j∈O
Soj + Bo ,

Soj
∣∣λj ∼ Poisson(rojeoTλj)
Bo
∣∣ξ ∼ Poisson(aoT ξ)
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Model Extension II: Different Background Intensities

In our data, the background intensity has an increasing trend as the
projected angle (in arcmin) on the sky from the center of the field of
view increases from 0 to 16.

Projected Angle Counts (counts) Region (pixels) Intensity (counts/pixels)

0-6 219962 22029408 0.0010

6-8 146332 14093856 0.0104

8-16 285300 26448800 0.0108

overall 0-16 651891 62572560 0.0104
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Model Extension II: Different Background Intensities

Notation:

Xk (counts): number of photons collected in background region k over T
seconds

ξk (counts/s/pixels): the background intensity in regions k

Ak (pixels): the size of background region k

Ok : the collection of source regions in the background region k

Model:

For counts from the pure background:

Xk

∣∣ξk ∼ Poisson(AkT ξk)

For counts from the source region O ∈ Ok :

Bo

∣∣ξk ∼ Poisson(aoT ξk)
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Simulation Study: The Robustness of the Model

Yi ∼ Poisson(rieiTλi + 5), for i = 1, · · · , 1000, X = 2.5× 105,

rieiTλi

{
= 0 with probability πd ,

∼ Gamma[µ∗ = 15, θ∗] with probability 1− πd .
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Simulation Study: The Robustness of the Model

Yi ∼ Poisson(rieiTλi + 10), for i = 1, · · · , 1000, X = 2.5× 105,

rieiTλi

{
= 0 with probability πd ,

∼ Gamma[µ∗ = 15, θ∗] with probability 1− πd .
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Simulation Study: Non-informativeness of the Prior

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 100
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Simulation Study: Non-informativeness of the Prior

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 500
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Simulation Study: Non-informativeness of the Prior

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 1000
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Hypothesis Testing for Existence of Dark Sources

Hypothesis Testing:

H0 : πd = 0, Ha : πd > 0.

Reject H0 if the p-value is low,

p-value = P(T (D) > T obs
∣∣H0),

where D ∼ H0 and T (D) is a test statistic.

However, D
∣∣H0 is unknown because α and β are unknown:

λi |α, β ∼ Gamma(α, β)

Posterior predictive p-value (ppp):

ppp = P0(T (D) > T obs
∣∣Dobs),

where D ∼ D
∣∣H0 with (α, β) ∼ α, β

∣∣Dobs ,H0.
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Hypothesis Testing for Existence of Dark Sources

Estimation of ppp:

1 Draw (α(t), β(t)) from (α, β)
∣∣Dobs for t = 1, 2, · · · ,m,

2 For each pair (α(t), β(t)), simulate D(t) from the null model and
calculate T (t) = T (D(t)),

3 Estimate ppp by

ppp ≈ 1

m

m∑
t=1

I
(
T (t) > T obs

)
.

Likelihood Ratio Test Statistics:

R(D) =
supα,β,πd La(α, β, πd

∣∣D)

supα,β L0(α, β
∣∣D)

,

We use T (D) = log(R(D)) as the test statistic.
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Calculation of Test Statistics

One simplification: ξ = X

L0(α, β
∣∣Y):

P0(Y
∣∣α, β) =

∫
P(Y

∣∣λ)P0(λ
∣∣α, β)dλ

= C
βα

Γ(α)

N∏
i=1

 Yi∑
j=1

c ji

(
Yi

j

)
Γ(Yi − j + α)

(β + rieiT )Yi−j+α

 .
La(α, β, πd

∣∣Y):

Pa(Y
∣∣α, β, πd) =

∫
P(Y

∣∣λ)Pa(λ
∣∣α, β, πd)dλ

= C
N∏
i=1

πdcYi
i + (1− πd)

βα

Γ(α)

Yi∑
j=1

c ji

(
Yi

j

)
Γ(Yi − j + α)

(β + rieiT )Yi−j+α

 .
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Simulation Study

Yi ∼ Poisson(rieiTλi + 5), for i = 1, · · · , 1000, X = 2.5× 105,

rieiTλi

{
= 0 with probability πd ,

∼ Gamma[µ∗ = 15, θ∗] with probability 1− πd .
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Simulation Study

Yi ∼ Poisson(rieiTλi + 10), for i = 1, · · · , 1000, X = 2.5× 105,

rieiTλi

{
= 0 with probability πd ,

∼ Gamma[µ∗ = 15, θ∗] with probability 1− πd .
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Simulation Study: Distribution of ppp

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 100

All the ppp’s are 0.
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Simulation Study: Distribution of ppp

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 500
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Simulation Study: Distribution of ppp

Bi ∼ Poisson(5), πd = 0.4, µ∗ = 15, θ∗ = 1000
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Real Data Analysis: No overlap sources, arcmin 6 6

Posterior distribution of the hyper-parameters

µ θ πd
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Real Data Analysis: No overlap sources, arcmin 6 6

Histogram of the test statistics: ppp ≈ 0.087.
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Real Data Analysis: all the overlap sources, arcmin 6 6

Posterior distribution of the hyper-parameters

µ θ πd
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Real Data Analysis: all the overlap sources, arcmin 6 8

Posterior distribution of the hyper-parameters (two background
intensities).
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Difficulty

Calculation of ppp in the presence of overlapping sources.

We need to calculate the likelihood ratio test statistic:

R(Y) =
supα,β,πd La(α, β, πd

∣∣Y)

supα,β L0(α, β
∣∣Y)

,

For simplicity:
N = 2, the two sources overlap.
O = {O1 = {1},O2 = {2},O3 = {1, 2}}

The “complete” data likelihood under the null hypothesis is

P0(Y,λ|α, β) = P(Y1

∣∣λ1)P(Y2

∣∣λ2)P(Y3

∣∣λ1, λ2)P(λ1, λ2
∣∣α, β)

∝ e−c1λ1−c2λ2λα−11 λα−12 (1 + c3λ1)Y1(1 + c3λ2)Y2(1 + c5λ1 + c6λ2)Y3 ,

where ci ’s are some constants.

We need to integrate out λ1 and λ2 to get the likelihood L0(α, β
∣∣Y).

The calculation is “feasible” but very complicated when we have more
overlaps and when N is large.
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Real Data Analysis: all the overlap sources, arcmin 6 8

Posterior distribution of the hyper-parameters (same background
intensities).
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