X-ray Dark Sources Detection

Lazhi Wang

Department of Statistics, Harvard University

Nov. 5th, 2013

Data

- Y_{i}, background contaminated photon counts in a source exposure over $T=48984.8$ seconds (13.6 hours),
- X, photon counts in the exposure of pure background over T seconds.

Goals of the Project

(1) To develop a fully Bayesian model to infer the distribution of the intensities of all the sources in a population.
(2) To identify the existence of dark sources in the population.

Outline

(1) The basic hierarchical Bayesian model
(2) Extensions of the basic model
(3) Extensive simulation studies:

- Robustness of the model
- Non-informativeness of the prior
(9) Identifying the existence of dark sources via hypothesis testing:
- Calculation of test-statistic and posterior predictive p -value
- Simulation study
(6) Real Data Application
(0) One Difficult Problem and Discussion

Basic Hierarchical Bayesian Model

- Level I:

$$
\begin{aligned}
Y_{i} & =\mathcal{S}_{i}+\mathcal{B}_{i} \\
\mathcal{S}_{i} \mid \lambda_{i} & \sim \operatorname{Poisson}\left(r_{i} e_{i} T \lambda_{i}\right) \\
\mathcal{B}_{i} \mid \xi & \sim \operatorname{Poisson}\left(a_{i} T \xi\right) \\
X \mid \xi & \sim \operatorname{Poisson}(A T \xi)
\end{aligned}
$$

- \mathcal{S}_{i} (counts): number of photons from source i in the source region,
- \mathcal{B}_{i} (counts): number of photons from the background in the source region,
- $\lambda_{i}\left(\mathrm{counts} / \mathrm{s} / \mathrm{cm}^{2}\right)$: the intensity of source i,
- ξ (counts/s/pixels): the intensity of background,
- T (seconds): exposure time, $T=48984.8$,
- $e_{i}\left(\mathrm{~cm}^{2}\right)$: the telescope effective area,
- r_{i} :proportion of photons from source i expected to fall in source region,
- a_{i} (pixels): the size of source region i,
- A (pixels): the size of background region.
$\mathcal{S}_{i}, \mathcal{B}_{i}, \lambda_{i}, \xi$ are all unobserved/latent, $T, e_{i}, r_{i}, a_{i}, A$ are all known constant. Y_{i}, X are observed data.

Basic Hierarchical Bayesian Model

- Level II:

$$
\begin{gathered}
\quad \xi \sim \operatorname{Gamma}\left(\alpha_{0}, \beta_{0}\right) \\
\lambda_{i} \mid \alpha, \beta, \pi_{d} \begin{cases}=0 & \text { with probability } \pi_{d} \\
\sim \operatorname{Gamma}(\alpha, \beta) & \text { with probability } 1-\pi_{d}\end{cases}
\end{gathered}
$$

- Level III: Prior on the hyper-parameters $\pi_{d}, \mu=\frac{\alpha}{\beta}, \theta=\frac{\alpha}{\beta^{2}}$

$$
\begin{gathered}
\pi_{d} \sim \operatorname{Unif}(0,1) \\
P(\mu, \theta) \propto \frac{1}{c_{1}^{2}+\left(\mu-c_{2}\right)^{2}} \frac{1}{c_{3}^{2}+\left(\theta-c_{4}\right)^{2}} I_{\mu>0, \theta>0}
\end{gathered}
$$

Model Extension I: Overlapping Sources

- Notation:
- $O=\left\{i_{1}, \cdots, i_{k}\right\}$ indicates the region formed by the overlap of source i_{1}, \cdots, i_{k}. For example, $O_{1}=\{1,2,4\}, O_{2}=\{1\}$.
- \mathcal{O} : the collection of all such regions.
- Level I model:

$$
\begin{aligned}
Y_{o}=\mathcal{S}_{o} & +\mathcal{B}_{o}=\sum_{j \in O} \mathcal{S}_{o j}+\mathcal{B}_{o} \\
\mathcal{S}_{o j} \mid \lambda_{j} & \sim \operatorname{Poisson}\left(r_{o j} e_{o} T \lambda_{j}\right) \\
\mathcal{B}_{o} \mid \xi & \sim \operatorname{Poisson}\left(a_{o} T \xi\right)
\end{aligned}
$$

Model Extension II: Different Background Intensities

- In our data, the background intensity has an increasing trend as the projected angle (in arcmin) on the sky from the center of the field of view increases from 0 to 16.

Projected Angle	Counts (counts)	Region (pixels)	Intensity (counts/pixels)
$0-6$	219962	22029408	0.0010
$6-8$	146332	14093856	0.0104
$8-16$	285300	26448800	0.0108
overall 0-16	651891	62572560	0.0104

Model Extension II: Different Background Intensities

- Notation:
- X_{k} (counts): number of photons collected in background region k over T seconds
- ξ_{k} (counts/s/pixels): the background intensity in regions k
- A_{k} (pixels): the size of background region k
- \mathcal{O}_{k} : the collection of source regions in the background region k
- Model:
- For counts from the pure background:

$$
X_{k} \mid \xi_{k} \sim \operatorname{Poisson}\left(A_{k} T \xi_{k}\right)
$$

- For counts from the source region $O \in \mathcal{O}_{k}$:

$$
B_{o} \mid \xi_{k} \sim \operatorname{Poisson}\left(a_{o} T \xi_{k}\right)
$$

Simulation Study: The Robustness of the Model

$Y_{i} \sim \operatorname{Poisson}\left(r_{i} e_{i} T \lambda_{i}+5\right)$, for $i=1, \cdots, 1000, \quad X=2.5 \times 10^{5}$,

$$
r_{i} e_{i} T \lambda_{i} \begin{cases}=0 & \text { with probability } \pi_{d}, \\ \sim \operatorname{Gamma}\left[\mu^{*}=15, \theta^{*}\right] & \text { with probability } 1-\pi_{d}\end{cases}
$$

	π_{d}									
θ^{*}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50	0.002	0.111	0.209	0.281	0.422	0.506	0.58	0.696	0.795	0.866
	$(0,0.01)$	$(0.09,0.14)$	$(0.17,0.24)$	$(0.26,0.33)$	$(0.37,0.44)$	$(0.48,0.55)$	$(0.53,0.61)$	$(0.68,0.75)$	$(0.76,0.82)$	$(0.86,0.91)$
100	0.009	0.102	0.226	0.255	0.367	0.525	0.589	0.702	0.795	0.838
	$(0,0.03)$	$(0.07,0.13)$	$(0.18,0.27)$	$(0.22,0.31)$	$(0.33,0.42)$	$(0.48,0.57)$	$(0.52,0.62)$	$(0.64,0.73)$	$(0.77,0.85)$	$(0.78,0.93)$
200	0.021	0.117	0.159	0.32	0.366	0.509	0.54	0.703	0.76	0.791
	$(0,0.05)$	$(0.06,0.17)$	$(0.11,0.24)$	$(0.24,0.37)$	$(0.29,0.44)$	$(0.41,0.55)$	$(0.49,0.62)$	$(0.62,0.76)$	$(0.68,0.83)$	$(0.47,0.95)$
	0.007	0.134	0.231	0.31	0.329	0.447	0.637	0.733	0.816	0.931
	$(0,0.06)$	$(0.03,0.18)$	$(0.13,0.3)$	$(0.27,0.43)$	$(0.18,0.44)$	$(0.21,0.54)$	$(0.53,0.69)$	$(0.65,0.77)$	$(0.75,0.88)$	$(0.87,0.95)$
500	0.005	0.067	0.266	0.262	0.505	0.561	0.564	0.606	0.789	0.931
	$(0,0.08)$	$(0,0.22)$	$(0.12,0.39)$	$(0.03,0.35)$	$(0.41,0.58)$	$(0.51,0.68)$	$(0.14,0.67)$	$(0.52,0.84)$	$(0.5,0.9)$	$(0.73,0.97)$
1000	0.16	0.296	0.176	0.415	0.418	0.568	0.594	0.544	0.829	0.921
	$(0.02,0.33)$	$(0,0.4)$	$(0,0.36)$	$(0.07,0.54)$	$(0.08,0.61)$	$(0.05,0.64)$	$(0.11,0.74)$	$(0.04,0.75)$	$(0.23,0.9)$	$(0.73,0.98)$

Simulation Study: The Robustness of the Model

$Y_{i} \sim \operatorname{Poisson}\left(r_{i} e_{i} T \lambda_{i}+10\right)$, for $i=1, \cdots, 1000, \quad X=2.5 \times 10^{5}$,
$r_{i} e_{i} T \lambda_{i} \begin{cases}=0 & \text { with probability } \pi_{d}, \\ \sim \operatorname{Gamma}\left[\mu^{*}=15, \theta^{*}\right] & \text { with probability } 1-\pi_{d} .\end{cases}$

	π_{d}									
θ^{*}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
50	0.006	0.133	0.21	0.312	0.399	0.498	0.588	0.727	0.745	0.889
	$(0,0.02)$	$(0.09,0.15)$	$(0.17,0.24)$	$(0.26,0.34)$	$(0.34,0.43)$	$(0.46,0.54)$	$(0.52,0.62)$	$(0.69,0.76)$	$(0.74,0.82)$	$(0.85,0.91)$
100	0.003	0.06	0.257	0.257	0.377	0.581	0.56	0.719	0.816	0.911
	$(0,0.03)$	$(0.03,0.11)$	$(0.18,0.28)$	$(0.19,0.3)$	$(0.35,0.45)$	$(0.5,0.6)$	$(0.5,0.64)$	$(0.67,0.76)$	$(0.78,0.87)$	$(0.85,0.94)$
200	0.028	0.188	0.221	0.291	0.331	0.537	0.523	0.736	0.785	0.903
	$(0,0.1)$	$(0.09,0.22)$	$(0.12,0.27)$	$(0.24,0.4)$	$(0.24,0.47)$	$(0.44,0.6)$	$(0.45,0.62)$	$(0.64,0.79)$	$(0.61,0.82)$	$(0.69,0.95)$
300	0.02	0.034	0.193	0.375	0.417	0.437	0.604	0.745	0.818	0.951
	$(0,0.1)$	$(0,0.15)$	$(0.07,0.31)$	$(0.24,0.45)$	$(0.31,0.51)$	$(0.21,0.57)$	$(0.5,0.71)$	$(0.64,0.81)$	$(0.58,0.88)$	$(0.73,0.96)$
500	0.004	0.274	0.188	0.095	0.497	0.521	0.713	0.769	0.642	0.935
	$(0,0.09)$	$(0,0.26)$	$(0,0.31)$	$(0.06,0.4)$	$(0.3,0.57)$	$(0.24,0.65)$	$(0.5,0.76)$	$(0.32,0.85)$	$(0.19,0.9)$	$(0.54,0.97)$
1000	0.106	0.268	0.082	0.339	0.327	0.542	0.633	0.476	0.812	0.959
	$(0,0.27)$	$(0,0.38)$	$(0,0.37)$	$(0.07,0.59)$	$(0.06,0.61)$	$(0.13,0.73)$	$(0.04,0.69)$	$(0.05,0.79)$	$(0.48,0.93)$	$(0.82,0.98)$

Simulation Study: Non-informativeness of the Prior

$$
\mathcal{B}_{i} \sim \operatorname{Poisson}(5), \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=100
$$

Simulation Study: Non-informativeness of the Prior

$$
\mathcal{B}_{i} \sim \operatorname{Poisson}(5), \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=500
$$

Simulation Study: Non-informativeness of the Prior

$\mathcal{B}_{i} \sim$ Poisson(5) $, \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=1000$

Hypothesis Testing for Existence of Dark Sources

- Hypothesis Testing:

$$
H_{0}: \pi_{d}=0, \quad H_{a}: \pi_{d}>0 .
$$

- Reject H_{0} if the p-value is low,

$$
\text { p-value }=P\left(T(\mathbb{D}) \geqslant T^{o b s} \mid H_{0}\right)
$$

where $\mathbb{D} \sim H_{0}$ and $T(\mathbb{D})$ is a test statistic.

Hypothesis Testing for Existence of Dark Sources

- Hypothesis Testing:

$$
H_{0}: \pi_{d}=0, \quad H_{a}: \pi_{d}>0
$$

- Reject H_{0} if the p-value is low,

$$
\text { p-value }=P\left(T(\mathbb{D}) \geqslant T^{\text {obs }} \mid H_{0}\right)
$$

where $\mathbb{D} \sim H_{0}$ and $T(\mathbb{D})$ is a test statistic.

- However, $\mathbb{D} \mid H_{0}$ is unknown because α and β are unknown:

$$
\lambda_{i} \mid \alpha, \beta \sim \operatorname{Gamma}(\alpha, \beta)
$$

- Posterior predictive p -value ($p p p$):

$$
p p p=P_{0}\left(T(\mathbb{D}) \geqslant T^{o b s} \mid \mathbb{D}^{o b s}\right)
$$

where $\mathbb{D} \sim \mathbb{D} \mid H_{0}$ with $(\alpha, \beta) \sim \alpha, \beta \mid \mathbb{D}^{\text {obs }}, H_{0}$.

Hypothesis Testing for Existence of Dark Sources

- Estimation of ppp:
(1) Draw $\left(\alpha^{(t)}, \beta^{(t)}\right)$ from $(\alpha, \beta) \mid D^{\text {obs }}$ for $t=1,2, \cdots, m$,
(2) For each pair $\left(\alpha^{(t)}, \beta^{(t)}\right)$, simulate $\mathcal{D}^{(t)}$ from the null model and calculate $T^{(t)}=T\left(\mathcal{D}^{(t)}\right)$,
(3) Estimate ppp by

$$
p p p \approx \frac{1}{m} \sum_{t=1}^{m} I\left(T^{(t)} \geqslant T^{o b s}\right) .
$$

Hypothesis Testing for Existence of Dark Sources

- Estimation of ppp:
(1) Draw $\left(\alpha^{(t)}, \beta^{(t)}\right)$ from $(\alpha, \beta) \mid \mathcal{D}^{\text {obs }}$ for $t=1,2, \cdots, m$,
(2) For each pair $\left(\alpha^{(t)}, \beta^{(t)}\right)$, simulate $\mathcal{D}^{(t)}$ from the null model and calculate $T^{(t)}=T\left(\mathcal{D}^{(t)}\right)$,
(3) Estimate ppp by

$$
p p p \approx \frac{1}{m} \sum_{t=1}^{m} I\left(T^{(t)} \geqslant T^{o b s}\right) .
$$

- Likelihood Ratio Test Statistics:

$$
R(\mathbb{D})=\frac{\sup _{\alpha, \beta, \pi_{d}} L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{D}\right)}{\sup _{\alpha, \beta} L_{0}(\alpha, \beta \mid \mathbb{D})}
$$

We use $T(\mathbb{D})=\log (R(\mathbb{D}))$ as the test statistic.

Calculation of Test Statistics

- One simplification: $\xi=X$
- $L_{0}(\alpha, \beta \mid \mathbb{Y})$:

$$
\begin{aligned}
P_{0}(\mathbb{Y} \mid \alpha, \beta) & =\int P(\mathbb{Y} \mid \boldsymbol{\lambda}) P_{0}(\boldsymbol{\lambda} \mid \alpha, \beta) d \boldsymbol{\lambda} \\
& =C \frac{\beta^{\alpha}}{\Gamma(\alpha)} \prod_{i=1}^{N}\left[\sum_{j=1}^{Y_{i}} c_{i}^{j}\binom{Y_{i}}{j} \frac{\Gamma\left(Y_{i}-j+\alpha\right)}{\left(\beta+r_{i} e_{i} T\right)^{Y_{i}-j+\alpha}}\right]
\end{aligned}
$$

- $L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{Y}\right)$:

$$
\begin{aligned}
& P_{a}\left(\mathbb{Y} \mid \alpha, \beta, \pi_{d}\right)=\int P(\mathbb{Y} \mid \boldsymbol{\lambda}) P_{a}\left(\boldsymbol{\lambda} \mid \alpha, \beta, \pi_{d}\right) d \boldsymbol{\lambda} \\
& =C \prod_{i=1}^{N}\left[\pi_{d} c_{i}^{Y_{i}}+\left(1-\pi_{d}\right) \frac{\beta^{\alpha}}{\Gamma(\alpha)} \sum_{j=1}^{Y_{i}} c_{i}^{j}\binom{Y_{i}}{j} \frac{\Gamma\left(Y_{i}-j+\alpha\right)}{\left(\beta+r_{i} e_{i} T\right)^{Y_{i}-j+\alpha}}\right] .
\end{aligned}
$$

Simulation Study

$Y_{i} \sim \operatorname{Poisson}\left(r_{i} e_{i} T \lambda_{i}+5\right)$, for $i=1, \cdots, 1000, \quad X=2.5 \times 10^{5}$,

$$
r_{i} e_{i} T \lambda_{i} \begin{cases}=0 & \text { with probability } \pi_{d} \\ \sim \operatorname{Gamma}\left[\mu^{*}=15, \theta^{*}\right] & \text { with probability } 1-\pi_{d}\end{cases}
$$

	π_{d}										
θ^{*}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
50	1	1	0	0	0	0	0	0	0	0	
100	0.179	0	0	0	0	0	0	0	0	0.001	
200	0.332	0	0	0	0	0	0	0	0	0.197	
300	1	0.01	0	0	0.002	0.003	0	0	0	0.001	
500	1	0.232	0.001	0.064	0	0	0.058	0.01	0.035	0.039	
1000	0.074	0.211	0.226	0.051	0.118	0.152	0.147	1	0.334	0.03	

Simulation Study

$$
Y_{i} \sim \operatorname{Poisson}\left(r_{i} e_{i} T \lambda_{i}+10\right), \text { for } i=1, \cdots, 1000, \quad X=2.5 \times 10^{5},
$$

$$
r_{i} e_{i} T \lambda_{i} \begin{cases}=0 & \text { with probability } \pi_{d} \\ \sim \operatorname{Gamma}\left[\mu^{*}=15, \theta^{*}\right] & \text { with probability } 1-\pi_{d}\end{cases}
$$

	π_{d}										
θ^{*}	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
50	0.18	0	0	0	0	0	0	0	0	0	
100	1	0.002	0	0	0	0	0	0	0	0	
200	0.034	0	0	0	0	0	0	0	0	0.018	
300	1	1	0.002	0	0	0.002	0	0	0.006	0.02	
500	1	0.087	0.11	0.025	0	0.015	0	0.072	0.207	0.149	
1000	0.426	0.46	0.392	0.086	0.146	0.05	0.451	1	0.05	0.016	

Simulation Study: Distribution of ppp

$$
\mathcal{B}_{i} \sim \operatorname{Poisson}(5), \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=100
$$

All the ppp's are 0 .

Simulation Study: Distribution of ppp

$\mathcal{B}_{i} \sim$ Poisson(5) $, \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=500$

Simulation Study: Distribution of ppp

$\mathcal{B}_{i} \sim$ Poisson(5) $, \quad \pi_{d}=0.4, \quad \mu^{*}=15, \quad \theta^{*}=1000$

Real Data Analysis: No overlap sources, arcmin $\leqslant 6$

- Posterior distribution of the hyper-parameters

Real Data Analysis: No overlap sources, arcmin $\leqslant 6$

- Histogram of the test statistics: $p p p \approx 0.087$.

Real Data Analysis: all the overlap sources, arcmin $\leqslant 6$

- Posterior distribution of the hyper-parameters

Real Data Analysis: all the overlap sources, arcmin $\leqslant 8$

- Posterior distribution of the hyper-parameters (two background intensities).

same background intensity

Difficulty

- Calculation of ppp in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$
R(\mathbb{Y})=\frac{\sup _{\alpha, \beta, \pi_{d}} L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{Y}\right)}{\sup _{\alpha, \beta} L_{0}(\alpha, \beta \mid \mathbb{Y})}
$$

Difficulty

- Calculation of ppp in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$
R(\mathbb{Y})=\frac{\sup _{\alpha, \beta, \pi_{d}} L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{Y}\right)}{\sup _{\alpha, \beta} L_{0}(\alpha, \beta \mid \mathbb{Y})}
$$

- For simplicity:
- $N=2$, the two sources overlap.
- $\mathcal{O}=\left\{O_{1}=\{1\}, O_{2}=\{2\}, O_{3}=\{1,2\}\right\}$

Difficulty

- Calculation of ppp in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$
R(\mathbb{Y})=\frac{\sup _{\alpha, \beta, \pi_{d}} L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{Y}\right)}{\sup _{\alpha, \beta} L_{0}(\alpha, \beta \mid \mathbb{Y})}
$$

- For simplicity:
- $N=2$, the two sources overlap.
- $\mathcal{O}=\left\{O_{1}=\{1\}, O_{2}=\{2\}, O_{3}=\{1,2\}\right\}$
- The "complete" data likelihood under the null hypothesis is $P_{0}(\mathbb{Y}, \boldsymbol{\lambda} \mid \alpha, \beta)=P\left(Y_{1} \mid \lambda_{1}\right) P\left(Y_{2} \mid \lambda_{2}\right) P\left(Y_{3} \mid \lambda_{1}, \lambda_{2}\right) P\left(\lambda_{1}, \lambda_{2} \mid \alpha, \beta\right)$
$\propto e^{-c_{1} \lambda_{1}-c_{2} \lambda_{2}} \lambda_{1}^{\alpha-1} \lambda_{2}^{\alpha-1}\left(1+c_{3} \lambda_{1}\right)^{Y_{1}}\left(1+c_{3} \lambda_{2}\right)^{Y_{2}}\left(1+c_{5} \lambda_{1}+c_{6} \lambda_{2}\right)^{Y_{3}}$,
where c_{i} 's are some constants.

Difficulty

- Calculation of ppp in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$
R(\mathbb{Y})=\frac{\sup _{\alpha, \beta, \pi_{d}} L_{a}\left(\alpha, \beta, \pi_{d} \mid \mathbb{Y}\right)}{\sup _{\alpha, \beta} L_{0}(\alpha, \beta \mid \mathbb{Y})}
$$

- For simplicity:
- $N=2$, the two sources overlap.
- $\mathcal{O}=\left\{O_{1}=\{1\}, O_{2}=\{2\}, O_{3}=\{1,2\}\right\}$
- The "complete" data likelihood under the null hypothesis is $P_{0}(\mathbb{Y}, \boldsymbol{\lambda} \mid \alpha, \beta)=P\left(Y_{1} \mid \lambda_{1}\right) P\left(Y_{2} \mid \lambda_{2}\right) P\left(Y_{3} \mid \lambda_{1}, \lambda_{2}\right) P\left(\lambda_{1}, \lambda_{2} \mid \alpha, \beta\right)$
$\propto e^{-c_{1} \lambda_{1}-c_{2} \lambda_{2}} \lambda_{1}^{\alpha-1} \lambda_{2}^{\alpha-1}\left(1+c_{3} \lambda_{1}\right)^{Y_{1}}\left(1+c_{3} \lambda_{2}\right)^{Y_{2}}\left(1+c_{5} \lambda_{1}+c_{6} \lambda_{2}\right)^{Y_{3}}$,
where c_{i} 's are some constants.
- We need to integrate out λ_{1} and λ_{2} to get the likelihood $L_{0}(\alpha, \beta \mid \mathbb{Y})$.
- The calculation is "feasible" but very complicated when we have more overlaps and when N is large.

Real Data Analysis: all the overlap sources, arcmin $\leqslant 8$

- Posterior distribution of the hyper-parameters (same background intensities).

real data analysis

