X-ray Dark Sources Detection

Lazhi Wang

Department of Statistics, Harvard University

Nov. 5th, 2013

Data

- Y_i, background contaminated photon counts in a source exposure over T = 48984.8 seconds (13.6 hours),
- X, photon counts in the exposure of pure background over T seconds.

• To develop a fully Bayesian model to infer the distribution of the intensities of all the sources in a population.

2 To identify the existence of dark sources in the population.

Outline

- The basic hierarchical Bayesian model
- Extensions of the basic model
- Stensive simulation studies:
 - Robustness of the model
 - Non-informativeness of the prior

Identifying the existence of dark sources via hypothesis testing:

- Calculation of test-statistic and posterior predictive p-value
- Simulation study
- 6 Real Data Application
- One Difficult Problem and Discussion

Basic Hierarchical Bayesian Model

Level I:

$$\begin{array}{lll} Y_i &=& \mathcal{S}_i + \mathcal{B}_i \\ \mathcal{S}_i \big| \lambda_i &\sim & \mathsf{Poisson}(r_i e_i T \lambda_i) \\ \mathcal{B}_i \big| \xi &\sim & \mathsf{Poisson}(a_i T \xi) \\ X \big| \xi &\sim & \mathsf{Poisson}(AT \xi) \end{array}$$

- S_i (counts): number of photons from source *i* in the source region,
- \mathcal{B}_i (counts): number of photons from the background in the source region,
- λ_i (counts/s/cm²): the intensity of source *i*,
- ξ (counts/s/pixels): the intensity of background,
- T (seconds): exposure time, T = 48984.8,
- *e_i* (cm²): the telescope effective area,
- r_i:proportion of photons from source i expected to fall in source region,
- *a_i* (pixels): the size of source region *i*,
- A (pixels): the size of background region.

 S_i, B_j, λ_i, ξ are all unobserved/latent, T, e_i, r_i, a_i, A are all known constant. Y_i, X are observed data.

Basic Hierarchical Bayesian Model

• Level II:

$$\xi \sim \text{Gamma}(\alpha_0, \beta_0)$$

$$\lambda_i | \alpha, \beta, \pi_d \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim \operatorname{Gamma}(\alpha, \beta) & \text{with probability } 1 - \pi_d. \end{cases}$$

• Level III: Prior on the hyper-parameters $\pi_d, \mu = \frac{\alpha}{\beta}, \theta = \frac{\alpha}{\beta^2}$

$$\pi_d \sim \textit{Unif}(0,1)$$
 $P(\mu, heta) \propto rac{1}{c_1^2 + (\mu - c_2)^2} rac{1}{c_3^2 + (heta - c_4)^2} I_{\mu > 0, heta > 0},$

Model Extension I: Overlapping Sources

- Notation:
 - $O = \{i_1, \dots, i_k\}$ indicates the region formed by the overlap of source i_1, \dots, i_k . For example, $O_1 = \{1, 2, 4\}, O_2 = \{1\}$.
 - \mathcal{O} : the collection of all such regions.
- Level I model:

• In our data, the background intensity has an increasing trend as the projected angle (in arcmin) on the sky from the center of the field of view increases from 0 to 16.

Projected Angle	Counts (counts)	Region (pixels)	Intensity (counts/pixels)
0-6	219962	22029408	0.0010
6-8	146332	14093856	0.0104
8-16	285300	26448800	0.0108
overall 0-16	651891	62572560	0.0104

Model Extension II: Different Background Intensities

• Notation:

- X_k (counts): number of photons collected in background region k over T seconds
- ξ_k (counts/s/pixels): the background intensity in regions k
- A_k (pixels): the size of background region k
- \mathcal{O}_k : the collection of source regions in the background region k
- Model:
 - For counts from the pure background:

$$X_k | \xi_k \sim \text{Poisson}(A_k T \xi_k)$$

• For counts from the source region $O \in \mathcal{O}_k$:

$$B_o | \xi_k \sim \text{Poisson}(a_o T \xi_k)$$

Simulation Study: The Robustness of the Model

$$Y_i \sim \text{Poisson}(r_i e_i T \lambda_i + 5)$$
, for $i = 1, \cdots, 1000$, $X = 2.5 \times 10^5$,

 $r_i e_i T \lambda_i \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim \operatorname{Gamma}[\mu^* = 15, \theta^*] & \text{with probability } 1 - \pi_d. \end{cases}$

		π_d									
θ^*	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
	0.002	0.111	0.209	0.281	0.422	0.506	0.58	0.696	0.795	0.866	
50	(0,0.01)	(0.09,0.14)	(0.17,0.24)	(0.26, 0.33)	(0.37,0.44)	(0.48, 0.55)	(0.53, 0.61)	(0.68, 0.75)	(0.76, 0.82)	(0.86,0.91)	
100	0.009	0.102	0.226	0.255	0.367	0.525	0.589	0.702	0.795	0.838	
	(0,0.03)	(0.07,0.13)	(0.18,0.27)	(0.22, 0.31)	(0.33, 0.42)	(0.48, 0.57)	(0.52, 0.62)	(0.64, 0.73)	(0.77, 0.85)	(0.78, 0.93)	
	0.021	0.117	0.159	0.32	0.366	0.509	0.54	0.703	0.76	0.791	
200	(0,0.05)	(0.06,0.17)	(0.11,0.24)	(0.24, 0.37)	(0.29,0.44)	(0.41, 0.55)	(0.49,0.62)	(0.62, 0.76)	(0.68, 0.83)	(0.47, 0.95)	
200	0.007	0.134	0.231	0.31	0.329	0.447	0.637	0.733	0.816	0.931	
300	(0,0.06)	(0.03, 0.18)	(0.13,0.3)	(0.27, 0.43)	(0.18,0.44)	(0.21, 0.54)	(0.53, 0.69)	(0.65, 0.77)	(0.75, 0.88)	(0.87, 0.95)	
500	0.005	0.067	0.266	0.262	0.505	0.561	0.564	0.606	0.789	0.931	
	(0,0.08)	(0, 0.22)	(0.12,0.39)	(0.03, 0.35)	(0.41, 0.58)	(0.51, 0.68)	(0.14,0.67)	(0.52, 0.84)	(0.5, 0.9)	(0.73, 0.97)	
1000	0.16	0.296	0.176	0.415	0.418	0.568	0.594	0.544	0.829	0.921	
	(0.02, 0.33)	(0,0.4)	(0,0.36)	(0.07,0.54)	(0.08,0.61)	(0.05, 0.64)	(0.11,0.74)	(0.04, 0.75)	(0.23, 0.9)	(0.73,0.98)	

Simulation Study: The Robustness of the Model

$$Y_i \sim ext{Poisson}(r_i e_i T \lambda_i + 10), ext{ for } i = 1, \cdots, 1000, \hspace{0.2cm} X = 2.5 imes 10^5,$$

 $r_i e_i T \lambda_i \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim \operatorname{Gamma}[\mu^* = 15, \theta^*] & \text{with probability } 1 - \pi_d. \end{cases}$

		π_d									
θ^*	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
	0.006	0.133	0.21	0.312	0.399	0.498	0.588	0.727	0.745	0.889	
50	(0,0.02)	(0.09,0.15)	(0.17,0.24)	(0.26, 0.34)	(0.34, 0.43)	(0.46, 0.54)	(0.52, 0.62)	(0.69,0.76)	(0.74,0.82)	(0.85, 0.91)	
100	0.003	0.06	0.257	0.257	0.377	0.581	0.56	0.719	0.816	0.911	
	(0,0.03)	(0.03,0.11)	(0.18, 0.28)	(0.19, 0.3)	(0.35, 0.45)	(0.5, 0.6)	(0.5, 0.64)	(0.67, 0.76)	(0.78,0.87)	(0.85, 0.94)	
200	0.028	0.188	0.221	0.291	0.331	0.537	0.523	0.736	0.785	0.903	
	(0,0.1)	(0.09,0.22)	(0.12, 0.27)	(0.24, 0.4)	(0.24, 0.47)	(0.44, 0.6)	(0.45, 0.62)	(0.64, 0.79)	(0.61, 0.82)	(0.69, 0.95)	
200	0.02	0.034	0.193	0.375	0.417	0.437	0.604	0.745	0.818	0.951	
300	(0,0.1)	(0,0.15)	(0.07,0.31)	(0.24, 0.45)	(0.31, 0.51)	(0.21, 0.57)	(0.5, 0.71)	(0.64, 0.81)	(0.58, 0.88)	(0.73, 0.96)	
500	0.004	0.274	0.188	0.095	0.497	0.521	0.713	0.769	0.642	0.935	
	(0,0.09)	(0,0.26)	(0,0.31)	(0.06, 0.4)	(0.3, 0.57)	(0.24, 0.65)	(0.5, 0.76)	(0.32, 0.85)	(0.19,0.9)	(0.54, 0.97)	
1000	0.106	0.268	0.082	0.339	0.327	0.542	0.633	0.476	0.812	0.959	
	(0,0.27)	(0,0.38)	(0,0.37)	(0.07, 0.59)	(0.06, 0.61)	(0.13, 0.73)	(0.04, 0.69)	(0.05,0.79)	(0.48,0.93)	(0.82, 0.98)	

Simulation Study: Non-informativeness of the Prior

$${\mathcal B}_i \sim {\sf Poisson}(5), \hspace{0.2cm} \pi_d = 0.4, \hspace{0.2cm} \mu^* = 15, \hspace{0.2cm} heta^* = 100$$

Simulation Study: Non-informativeness of the Prior

$${\mathcal B}_i \sim {\sf Poisson}(5), \hspace{0.2cm} \pi_d = 0.4, \hspace{0.2cm} \mu^* = 15, \hspace{0.2cm} heta^* = 500$$

Simulation Study: Non-informativeness of the Prior

$$\mathcal{B}_i \sim \mathsf{Poisson}(5), \hspace{0.2cm} \pi_d = 0.4, \hspace{0.2cm} \mu^* = 15, \hspace{0.2cm} heta^* = 1000$$

• Hypothesis Testing:

$$H_0: \pi_d = 0, \quad H_a: \pi_d > 0.$$

• Reject H_0 if the p-value is low,

p-value =
$$P(T(\mathbb{D}) \ge T^{obs} | H_0)$$
,

where $\mathbb{D} \sim H_0$ and $T(\mathbb{D})$ is a test statistic.

• Hypothesis Testing:

$$H_0: \pi_d = 0, \quad H_a: \pi_d > 0.$$

• Reject H_0 if the p-value is low,

p-value =
$$P(T(\mathbb{D}) \ge T^{obs} | H_0)$$
,

where $\mathbb{D} \sim H_0$ and $T(\mathbb{D})$ is a test statistic.

• However, $\mathbb{D}|H_0$ is unknown because α and β are unknown:

$$\lambda_i | \alpha, \beta \sim \text{Gamma}(\alpha, \beta)$$

• Posterior predictive p-value (ppp):

$$ppp = P_0(T(\mathbb{D}) \ge T^{obs} | \mathbb{D}^{obs}),$$

where $\mathbb{D} \sim \mathbb{D} | H_0$ with $(\alpha, \beta) \sim \alpha, \beta | \mathbb{D}^{obs}, H_0$.

- Estimation of ppp:
 - **1** Draw $(\alpha^{(t)}, \beta^{(t)})$ from $(\alpha, \beta) | \mathcal{D}^{obs}$ for $t = 1, 2, \cdots, m$,
 - Solution For each pair $(\alpha^{(t)}, \beta^{(t)})$, simulate $\mathcal{D}^{(t)}$ from the null model and calculate $\mathcal{T}^{(t)} = \mathcal{T}(\mathcal{D}^{(t)})$,
 - Setimate *ppp* by

$$ppp pprox rac{1}{m} \sum_{t=1}^m I\left(T^{(t)} \geqslant T^{obs}
ight).$$

- Estimation of ppp:
 - Oraw $(\alpha^{(t)}, \beta^{(t)})$ from $(\alpha, \beta) | \mathcal{D}^{obs}$ for $t = 1, 2, \cdots, m$,
 - Output: Provide the second state (α^(t), β^(t)), simulate D^(t) from the null model and calculate T^(t) = T(D^(t)),
 - Setimate *ppp* by

$$ppp pprox rac{1}{m} \sum_{t=1}^m I\left(T^{(t)} \geqslant T^{obs}
ight).$$

Likelihood Ratio Test Statistics:

$$R(\mathbb{D}) = \frac{\sup_{\alpha,\beta,\pi_d} L_a(\alpha,\beta,\pi_d | \mathbb{D})}{\sup_{\alpha,\beta} L_0(\alpha,\beta | \mathbb{D})},$$

We use $T(\mathbb{D}) = log(R(\mathbb{D}))$ as the test statistic.

Calculation of Test Statistics

- One simplification: $\xi = X$
- $L_0(\alpha, \beta | \mathbb{Y})$:

$$P_{0}(\mathbb{Y}|\alpha,\beta) = \int P(\mathbb{Y}|\lambda)P_{0}(\lambda|\alpha,\beta)d\lambda$$
$$= C \frac{\beta^{\alpha}}{\Gamma(\alpha)} \prod_{i=1}^{N} \left[\sum_{j=1}^{Y_{i}} c_{i}^{j} \begin{pmatrix} Y_{i} \\ j \end{pmatrix} \frac{\Gamma(Y_{i}-j+\alpha)}{(\beta+r_{i}e_{i}T)^{Y_{i}-j+\alpha}} \right]$$

• $L_a(\alpha, \beta, \pi_d | \mathbb{Y})$:

$$P_{a}(\mathbb{Y}|\alpha,\beta,\pi_{d}) = \int P(\mathbb{Y}|\boldsymbol{\lambda})P_{a}(\boldsymbol{\lambda}|\alpha,\beta,\pi_{d})d\boldsymbol{\lambda}$$
$$= C\prod_{i=1}^{N} \left[\pi_{d}c_{i}^{\mathbf{Y}_{i}} + (1-\pi_{d})\frac{\beta^{\alpha}}{\Gamma(\alpha)}\sum_{j=1}^{\mathbf{Y}_{i}}c_{i}^{j}\binom{\mathbf{Y}_{i}}{j}\frac{\Gamma(\mathbf{Y}_{i}-j+\alpha)}{(\beta+r_{i}e_{i}T)^{\mathbf{Y}_{i}-j+\alpha}}\right]$$

.

$$Y_i \sim \text{Poisson}(r_i e_i T \lambda_i + 5), \text{ for } i = 1, \cdots, 1000, \ X = 2.5 \times 10^5,$$

$$r_i e_i T \lambda_i \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim \operatorname{Gamma}[\mu^* = 15, \theta^*] & \text{with probability } 1 - \pi_d. \end{cases}$$

	π_d										
θ^*	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
50	1	1	0	0	0	0	0	0	0	0	
100	0.179	0	0	0	0	0	0	0	0	0.001	
200	0.332	0	0	0	0	0	0	0	0	0.197	
300	1	0.01	0	0	0.002	0.003	0	0	0	0.001	
500	1	0.232	0.001	0.064	0	0	0.058	0.01	0.035	0.039	
1000	0.074	0.211	0.226	0.051	0.118	0.152	0.147	1	0.334	0.03	

 $Y_i \sim \text{Poisson}(r_i e_i T \lambda_i + 10), \text{ for } i = 1, \cdots, 1000, X = 2.5 \times 10^5,$

$$r_i e_i T \lambda_i \begin{cases} = 0 & \text{with probability } \pi_d, \\ \sim \operatorname{Gamma}[\mu^* = 15, \theta^*] & \text{with probability } 1 - \pi_d. \end{cases}$$

	π_d										
θ^*	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
50	0.18	0	0	0	0	0	0	0	0	0	
100	1	0.002	0	0	0	0	0	0	0	0	
200	0.034	0	0	0	0	0	0	0	0	0.018	
300	1	1	0.002	0	0	0.002	0	0	0.006	0.02	
500	1	0.087	0.11	0.025	0	0.015	0	0.072	0.207	0.149	
1000	0.426	0.46	0.392	0.086	0.146	0.05	0.451	1	0.05	0.016	

$$\mathcal{B}_i \sim \text{Poisson}(5), \ \pi_d = 0.4, \ \mu^* = 15, \ \theta^* = 100$$

All the ppp's are 0.

Simulation Study: Distribution of ppp

$$\mathcal{B}_i \sim \text{Poisson}(5), \ \pi_d = 0.4, \ \mu^* = 15, \ \theta^* = 500$$

Simulation Study: Distribution of ppp

$$\mathcal{B}_i \sim \mathsf{Poisson}(5), \hspace{0.2cm} \pi_d = 0.4, \hspace{0.2cm} \mu^* = 15, \hspace{0.2cm} heta^* = 1000$$

Real Data Analysis: No overlap sources, arcmin $\leqslant 6$

• Posterior distribution of the hyper-parameters

Real Data Analysis: No overlap sources, arcmin ≤ 6

• Histogram of the test statistics: $ppp \approx 0.087$.

Real Data Analysis: all the overlap sources, arcmin $\leqslant 6$

• Posterior distribution of the hyper-parameters

Real Data Analysis: all the overlap sources, arcmin $\leqslant 8$

Posterior distribution of the hyper-parameters (two background intensities).

same background intensity

- Calculation of *ppp* in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$R(\mathbb{Y}) = \frac{\sup_{\alpha,\beta,\pi_d} L_a(\alpha,\beta,\pi_d | \mathbb{Y})}{\sup_{\alpha,\beta} L_0(\alpha,\beta | \mathbb{Y})},$$

- Calculation of *ppp* in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$R(\mathbb{Y}) = \frac{\sup_{\alpha,\beta,\pi_d} L_{\mathsf{a}}(\alpha,\beta,\pi_d | \mathbb{Y})}{\sup_{\alpha,\beta} L_{\mathsf{0}}(\alpha,\beta | \mathbb{Y})},$$

• For simplicity:

• N = 2, the two sources overlap.

•
$$\mathcal{O} = \{ \mathcal{O}_1 = \{1\}, \mathcal{O}_2 = \{2\}, \mathcal{O}_3 = \{1, 2\} \}$$

- Calculation of *ppp* in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$R(\mathbb{Y}) = \frac{\sup_{\alpha,\beta,\pi_d} L_{\mathsf{a}}(\alpha,\beta,\pi_d | \mathbb{Y})}{\sup_{\alpha,\beta} L_{\mathsf{0}}(\alpha,\beta | \mathbb{Y})},$$

- For simplicity:
 - N = 2, the two sources overlap.
 - $\mathcal{O} = \{ \mathcal{O}_1 = \{1\}, \mathcal{O}_2 = \{2\}, \mathcal{O}_3 = \{1, 2\} \}$
- The "complete" data likelihood under the null hypothesis is $P_{0}(\mathbb{Y}, \boldsymbol{\lambda} | \alpha, \beta) = P(Y_{1} | \lambda_{1}) P(Y_{2} | \lambda_{2}) P(Y_{3} | \lambda_{1}, \lambda_{2}) P(\lambda_{1}, \lambda_{2} | \alpha, \beta)$ $\propto e^{-c_{1}\lambda_{1}-c_{2}\lambda_{2}} \lambda_{1}^{\alpha-1} \lambda_{2}^{\alpha-1} (1+c_{3}\lambda_{1})^{Y_{1}} (1+c_{3}\lambda_{2})^{Y_{2}} (1+c_{5}\lambda_{1}+c_{6}\lambda_{2})^{Y_{3}},$ where c_{i} 's are some constants.

- Calculation of *ppp* in the presence of overlapping sources.
- We need to calculate the likelihood ratio test statistic:

$$R(\mathbb{Y}) = \frac{\sup_{\alpha,\beta,\pi_d} L_{\mathsf{a}}(\alpha,\beta,\pi_d | \mathbb{Y})}{\sup_{\alpha,\beta} L_{\mathsf{0}}(\alpha,\beta | \mathbb{Y})},$$

- For simplicity:
 - N = 2, the two sources overlap.
 - $\mathcal{O} = \{ \mathcal{O}_1 = \{1\}, \mathcal{O}_2 = \{2\}, \mathcal{O}_3 = \{1, 2\} \}$
- The "complete" data likelihood under the null hypothesis is $P_0(\mathbb{Y}, \boldsymbol{\lambda} | \alpha, \beta) = P(Y_1 | \lambda_1) P(Y_2 | \lambda_2) P(Y_3 | \lambda_1, \lambda_2) P(\lambda_1, \lambda_2 | \alpha, \beta)$ $\propto e^{-c_1 \lambda_1 - c_2 \lambda_2} \lambda_1^{\alpha - 1} \lambda_2^{\alpha - 1} (1 + c_3 \lambda_1)^{Y_1} (1 + c_3 \lambda_2)^{Y_2} (1 + c_5 \lambda_1 + c_6 \lambda_2)^{Y_3},$ where c_i 's are some constants.
- We need to integrate out λ_1 and λ_2 to get the likelihood $L_0(\alpha, \beta | \mathbb{Y})$.
- The calculation is "feasible" but very complicated when we have more overlaps and when N is large.

Real Data Analysis: all the overlap sources, arcmin $\leqslant 8$

• Posterior distribution of the hyper-parameters (same background intensities).

