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Gaussian Processes Hierarchical Bayes Spatial GLMs

Covariance and Prediction: An Example

I Suppose at each location si , Z (si ) is Gaussian with mean µi and
variance σ2

i , and that the between-site covariance matrix is Σ.
{Z (si ), i = 1, . . . , n} is then multivariate normal with mean vector
µ and covariance matrix Σ

I Now suppose we observe sites 2, . . . , n, i.e. we have observations
z2:n = z(s2), . . . , z(sn).

I Can we work out the distribution of Z (s1), given the observations?
I Yes! As the process is multivariate normal, we know that

Z (s1)|z2:n ∼ N
(
µ1 + Σ12Σ−1

22 (z2:n − µ2:n), σ2
1 − Σ12Σ−1

22 Σ21
)

I What happens when we add a new location?
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Gaussian Processes Hierarchical Bayes Spatial GLMs

Covariance functions

I Prediction requires estimating the mean µ (n parameters) and
covariance Σ (n(n + 1)/2 parameters). What to do for unobserved
locations?

I We need to simplify things via some assumptions, the most
common of which is to assume second-order (or weak) stationarity:

E[Z (s)] = µ

Cov [Z (s),Z (s ′)] = Cov [Z (s + δ),Z (s ′ + δ)] ∀δ.

Specifically, the covariance only depends on the spatial lag
h = s − s ′ between locations. We call C (h) = Cov [Z (0),Z (h)] the
covariance function
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Bayes Theorem

I Assume we have some parameters θ = (θ1, . . . , θp) which come
from the prior distribution π(θ|η) and we observe some data
z = (z1, . . . , zn) which has the distribution π(z |θ)

π(θ|z ,η) =
π(z |θ)π(θ|η)∫
π(z |θ)π(θ|η)dθ

I Sometimes we put a hyperprior on η, π(η), and the posterior then
becomes

π(θ|z) =

∫
π(z |θ)π(θ|η)π(η)dη∫ ∫
π(z |θ)π(θ|η)π(η)dηdθ

I Alternatively, we can take an empirical Bayes approach and find a
value of η to maximize π(z |η).
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Point Estimation

I Assuming we have the posterior distribution π(θ|z), we can find
point estimates of θ

I The mean:

θ̂ = E(θ|z)

I The median:

θ̂ :

∫ θ̂

−∞
π(θ|z)dθ = 0.5

I The mode (aka the MAP):

θ̂ : sup
θ
π(θ|z)
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Interval Estimation

I We can create a 95% credible interval by finding the values∫ ll

−∞
π(θ|z) = α/2 and

∫ ∞
lu

π(θ|z) = α/2

I A shorter 95% interval is the set

θ : π(θ|z) > c where we maximize c such that∫
π(θ|z)>c

π(θ|z) = 0.95
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Gibbs Sampler

I Recall that we can use samples θ(1), . . . ,θ(T ) from π(θ|z) to
estimate expectations E(g(θ)|z) via

Ê(g(θ)|z) =
1
T

T∑
1

g(θ(t))

One way to generate these samples is to iteratively sample from
the full conditionals π(θi |θ−i , z)

I The Gibbs sampler first finds starting values θ(0)1 , . . . , θ
(0)
p , then

iterates, for t in 1, . . . ,T
1. Sample θ(t)1 from π(θ1|θ(t−1)

2 , . . . , θ
(t−1)
p , z)

2. Sample θ(t)2 from π(θ2|θ(t)1 , θ
(t−1)
3 , . . . , θ

(t−1)
p , z)

...
3. Sample θ(t)p from π(θp|θ(t)1 , . . . , θ

(t)
p−1, z)
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Metropolis-Hastings

I What if you can’t sample from π(θ|θ−i , z)?
I You can instead propose θ∗ from some (symmetric) proposal

distribution q(θ)

I Calculate

r =
π(θ∗|z)

π(θ(t−1)|z)

I If r ≥ 1, set θ(t) = θ∗

I If r ≤ 1, set θ(t) = θ∗ with probability r , and θ(t) = θ(t−1) with
probability 1− r .
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The hierarchical Bayes framework

I In the hierarchical process framework, we want to learn about an
underlying process Y through some (noisy, polluted, transformed)
data Z .

I Z comes from Y through π(Z |Y , θ) where θ are some parameters.
I The process Y also often depends on some such parameters, via
π(Y |θ)

I

Luke Bornn (Harvard) AstroStat
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Extending the hierarchical process model

I Z (s) = µ(s) + Y (s) + ε(s) with some parameters θ where

µ(s) = xT (s)β and
Y (s)|θ ∼ N(0,Σ)

where Σij = Cσ2,φ(s i − s j) = σ2ρφ(s i − s j). Here ε(s) is a
white-noise process with parameter σ2

ε .

I We would also assign a prior distribution to θ, π(θ)

I To approximate the posterior, iteratively sample Y as well as the
parameters θ = β, φ, σ2, σ2

ε .
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Marginalizing out the latent process

I We can alternatively write

Z (s) ∼ N(xT (s)β,Σ + σ2
ε I )

and avoid the sampling of Y . DEMO

I However, we’re often interested in

π(Y |z) =

∫
π(Y ,θ|z)dθ

=

∫
π(Y |θ, z)π(θ|z)dθ

I If we have samples θ1, . . . ,θT from π(θ|z), then samples Y (t)from

Y (t) ∼ π(Y |θ(t), z)

will be distributed as π(Y |z), as desired.

Luke Bornn (Harvard) AstroStat



Gaussian Processes Hierarchical Bayes Spatial GLMs

Marginalizing out the latent process

I We can alternatively write

Z (s) ∼ N(xT (s)β,Σ + σ2
ε I )

and avoid the sampling of Y . DEMO
I However, we’re often interested in

π(Y |z) =

∫
π(Y ,θ|z)dθ

=

∫
π(Y |θ, z)π(θ|z)dθ

I If we have samples θ1, . . . ,θT from π(θ|z), then samples Y (t)from

Y (t) ∼ π(Y |θ(t), z)

will be distributed as π(Y |z), as desired.

Luke Bornn (Harvard) AstroStat



Gaussian Processes Hierarchical Bayes Spatial GLMs

Marginalizing out the latent process

I We can alternatively write

Z (s) ∼ N(xT (s)β,Σ + σ2
ε I )

and avoid the sampling of Y . DEMO
I However, we’re often interested in

π(Y |z) =

∫
π(Y ,θ|z)dθ

=

∫
π(Y |θ, z)π(θ|z)dθ

I If we have samples θ1, . . . ,θT from π(θ|z), then samples Y (t)from

Y (t) ∼ π(Y |θ(t), z)

will be distributed as π(Y |z), as desired.

Luke Bornn (Harvard) AstroStat



Gaussian Processes Hierarchical Bayes Spatial GLMs

What about predicting at an unknown location s0?

I We need to find the predictive distribution

π(Z (s0)|z ,θ) =

∫
π(Z (s0),θ|z , x , x(s0))dθ

=

∫
π(Z (s0)|z ,θ, x(s0))π(θ|z , x)dθ

where π(Z (s0)|z ,θ, x(s0)) is a conditional normal, given the joint
multivariate normal structure of Z (s0) and the data z .

I If we have samples θ1, . . . ,θT from π(θ|z , x), then the predictive
integral is computed via a Monte Carlo mixture,

π̂(Z (s0)|z , x , x(s0)) =
1
T

T∑
t=1

π(Z (s0)|z ,θ(t), x(s0))

Luke Bornn (Harvard) AstroStat
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Sampling to the rescue, again

I Again, we have samples θ1, . . . ,θT from π(θ|z , x). Next simulate

z(t)0 ∼ π(Z (s0)|z ,θ(t), x(s0))

which creates a set of samples from the posterior predictive density.

I We can use these samples to find a point estimate (mean, median,
etc.) as well as prediction variance.
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From continuous to binary data

I In the hierarchical framework, we modeled Gaussian data as

Z (s) ∼ N(Xβ + Y (s), τ2I )

Y (s) ∼ N(0,Σσ2,φ)

plus potentially further prior information on τ2, σ2,β, φ, etc.

I We could instead write, for example that Z |Y is Poisson or
Binomial
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Connection to Generalized Linear Mixed Models

I Assume our data comes from an exponential family,

π(Z (s)|β,Y (s), κ) = h(Z (s), κ) exp{κ(Z (s)η(s)− Φ(η(s)))}

where g(η(s)) = x(s)β + Y (s) for some link function g , where κ
is a dispersion parameter. This family of distributions includes the
Gaussian, Poisson, Binomial, and many others.

I As before, we assume

Y (s) ∼ N(0,Σσ2,φ)

If, on the contrary, Y was iid, then this would be the usual
generalized linear mixed model (GLMM). Hence, what we have is
still a GLMM, but with spatial correlation in the random effects.

Luke Bornn (Harvard) AstroStat
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Notes on the GLMM framework

I Firstly, we have not created a “spatial process” for Z . Rather, we
have defined a joint distribution π(Z (s)|β, σ2, φ, κ), namely∫ ( n∏

i=1

π(Z (s i )|β, σ2, φ, κ)

)
π(Y (s)|σ2, φ)dY

I Secondly, there’s no need to include random (white) noise ε
because stochastic variability is already included in the specification
of π(Z (s)|β,Y (s), κ)
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