Removing systematic noise from lightcurves
A discussion of past approaches and potential future directions

Giri Gopalan¹ Dr. Peter Plavchan²

¹Department of Statistics
Harvard University

²Caltech
NASA IPAC

Stat 310, Feb 11th, 2014
• **Motivation**: Lightcurves, exoplanets, systematic noise

• **“Trend Filtering Algorithm”**: Concise mathematical and computational foundation and extensions

• **Applying TFA and the Perils of Overfitting: 2MASS and PTF Data**

• **Future Directions**: A more principled Bayesian approach, modeling the frequency domain with wavelets.
Motivation: transiting exoplanets
Motivation: transiting exoplanets

Gopalan, Giri

Removing “systematic” noise from lightcurves
Motivation: systematic trends

Removing "systematic" noise from lightcurves
Let $Y \in \mathbb{R}^{nx1}$ be an unfiltered lightcurve.

Let $T \in \mathbb{R}^{kxn}$ be a “template” set where each row represents a “systematic” trend. Presumably k is much smaller than the number of total lightcurves. It is also reasonable to assume $k \leq n$.

By assumption, the total systematic noise affecting lightcurve Y is a linear combination of the rows of T, namely $F = T^t c$ for some $c \in \mathbb{R}^k$.

The filtered lightcurve is then $Y - T^t c \in \mathbb{R}^n$.

How do we find c?
The original literature algorithm simply uses a least squares estimate: \(\arg\min_c ||Y - T^t c||_2 \).

This has a well known result: \(c = (TT^t)^{-1} TY \). (If \(\text{rank}(TT^t) < k \), we can use the pseudoinverse.)

So we are simply (orthogonally) projecting the lightcurve onto the vector space spanned by the template trends to determine the noise.
Say we have additional information thought to correlate with noise e.g. seeing conditions.

TFA simply corrects for this by including extra rows to T.

Say we have a variance estimate for the brightness measurement at a particular time point.

TFA simply corrects for this by weighting by the inverse of this measurement.

i.e. We now solve the minimization problem:

$$\arg\min_c \| (Y - T^t c) S^{-1} \|_2$$

where T has additional rows for the ancillary information and $S \in \mathbb{R}^n$ is a diagonal matrix with $S_{ii} = \hat{\sigma}_i$.
TFA: choosing a template set

- Crux of the approach: determining T, the template set of systematic trends.

- Bakos and Kovacs suggested simply using a cutoff of the standard deviation of a lightcurve as a criterion for including it in the template set which resulted in approximately 50 template lightcurves. In addition to being somewhat ad-hoc, using this approach leads to overfitting, as will be illustrated shortly.

- The approach suggested in Kim et al. was to use unsupervised learning to extract the systematic trends from the data set. We tried two different methods: KMEANS and hierarchical clustering.
TFA: KMEANS clustering

- Initialize K random points in \mathbb{R}^n as centers.
- Assign each light curve to the cluster it is closest to.
- Terminate when no new assignments are made.

(Often sold as an instance of the EM algorithm in fitting a mixture of multivariate-normals, but this is not exactly true: there are data sets where the two methods will give you different results.)
TFA: KMEANS clustering

Removing “systematic” noise from lightcurves
TFA: KMEANS clustering

Removing "systematic" noise from lightcurves
TFA: Hierarchical Tree Clustering

- Compute a distance matrix for the lightcurves
- Compute a binary tree using the distance matrix
- Use the binary tree to determine clusters via a merging algorithm

Gopalan, Giri
Removing “systematic” noise from lightcurves
TFA: Hierarchical Tree Clustering

Removing “systematic” noise from lightcurves
Forming the Clusters Given a Tree

- Set initial clusters to be the singletons.
- Consider merging two closest nodes under one cluster.
- If the distribution of distances in this node is normally distributed, we have reason to believe all stars are correlated. (Seems ad-hoc...)
TFA Results on 2MASS and PTF

Removing "systematic" noise from lightcurves

PTF Dispersion Plot

2MASS Dispersion Plot
Overfitting

PTF Detrended and Original Lightcurve for 00001431.dat

I-band Magnitude

JD - 2450000.0
Overfitting

PTF Detrended and Original Lightcurve for 00000489.dat

I-band Magnitude

2.4549e+06 2.4549e+06 2.4549e+06 2.4549e+06

JD - 2450000.0

Gopalan, Giri Removing “systematic” noise from lightcurves
Using clustering to reduce the size of the template set

PTF Dispersion Plot
TFA With Uncertainty Correction and Template Optimization

Gopalan, Giri
Removing “systematic” noise from lightcurves
Using clustering to reduce the size of the template set

PTF Detrended and Original Lightcurve for 00000467.dat
Future Directions

- Are we killing signal and therefore missing planets in the data?
- The selection of template trends is messy: we are mixing signal and noise!
- The method is not statistically principled; can we write down one cohesive probabilistic/statistical model for the generation of a widefield survey?
- Can we eliminate overfitting by regularization or wisely chosen priors for c? (The typical approach is to use L_1 penalization).
- Can we model systematic trends directly? What are their properties in the frequency domain?
- Finally, can we put these approaches together into a cohesive hierarchical Bayesian model?
One way to eliminate overfitting is to shrink the coefficients of c.

The non-Bayesian (LASSO) way: $\arg\min_c \| Y - T^t c \|_2^2 + \lambda \| c \|_1$

The Bayesian way: choose informative priors peaked at zero for c.
Future Directions: exploring the frequency domain

- Due to periodicity, systematic trends may be better represented in the frequency domain than the time domain.
- One possibility: use the orthorornormal, complete eigenbasis supplied by Sturm-Louiville operators: Fourier Transform!
- Another possibility: use a wavelet basis.
- Ideal situation: combine both: separate trends with a strong frequency component and time components.
An alternative approach is to utilize a wavelet basis.

Advantages: certain wavelets (due to Ingrid Daubchies) have compact support!

Avoid Gibbs’ phenomenon

Potentially sparse in the frequency domain

Localize in both frequency and wavelet domain.

Contrast to Fourier Transform where there is a tradeoff in the time and frequency domain: e.g the eigenbasis of Momentum in QM corresponds to the Fourier Transform, so the uncertainty principle in QM is a restatement of this property of the FT.

If some of the trends are strongly periodic, we’d probably want to use the FT.
• Draw K according to a poisson distribution.

• Draw K “systematic” trends $T \in \mathbb{R}^{k \times n}$ as a mixture of Multivariate Normals in the frequency domain. We may want to impose structure on the covariance matrices (e.g., treat them as Gaussian Processes).

• For each lightcurve, draw a vector of coefficients $c_i \in \mathbb{R}^k$ with a strongly informative prior peaked at 0 in each component.

• The observed signal is then $Y_i = T^t c_i + S_i$ For S_i the “true” signal.

Gopalan, Giri
Removing “systematic” noise from lightcurves
We need to incorporate chip position. (Some systematics are thought to be dependent on the position.)

Computational considerations: TFA requires only matrix inversion. Presumably we will use a MCMC scheme to fit this model: how will the computational complexity compare?

Thanks

- Caltech SURF
- Dr. Peter Plavchan
- Xiao-Li
- Astrostats group