Three data analysis problems

Andreas Zezas

University of Crete CfA

Two types of problems:

- Fitting
- Source Classification

Iterative fitting may work, but it is inefficient and confidence intervals on parameters not reliable

How do we fit jointly the two datasets ?

Galaxy Spectral Engery Distribution (SED) 0.1 0.01 10 10° Best Mode Optical Spectrum Photometric Flux 12 10 -2 10 10 100 10^{-15} 10Energy (ketV) 10^{7} 10^{2} 10^{3} 10^{6} 10^{8} 10^{1} Wavelength (A)

VERY common problem !

data and folded model

Problem 2

Model selection in 2D fits of images

A primer on galaxy morphology

Three components:

spheroidal

$$I(R) = I_e \exp\left[-7.67 \left[\left(\frac{R}{R_e}\right)^{1/4} - 1 \right] \right]$$

exponential disk

$$I(R) = I_0 \exp\left(\frac{r}{r_h}\right)$$

and nuclear point source (PSF)

Fitting: The method

Use a generalized model

$$I(R) = I_e \exp\left[-k\left[\left(\frac{R}{R_e}\right)^{1/n} - 1\right]\right] \qquad \begin{array}{l} \mathsf{n=4: spheroidal}\\ \mathsf{n=1: disk}\end{array}$$

Add other (or alternative) models as needed

Add blurring by PSF

Do χ^2 fit (e.g. Peng et al., 2002)

$$\chi_{\nu}^{2} = \frac{1}{N_{\text{dof}}} \sum_{x=1}^{nx} \sum_{y=1}^{ny} \frac{\left(\text{flux}_{x,y} - \text{model}_{x,y}\right)^{2}}{\sigma_{x,y}^{2}}$$
$$\text{model}_{x,y} = \sum_{\nu=1}^{nf} f_{\nu,x,y}(\alpha_{1} \dots \alpha_{n})$$

Fitting: The method

.

Typical model tree

$$I(R) = I_e \exp\left[-k\left[\left(\frac{R}{R_e}\right)^{1/n} - 1\right]\right]$$

Fitting: Discriminating between models

Generally χ^2 works

BUT:

Combinations of different models may give similar χ^2

How to select the best model?

Models not nested: cannot use standard methods

Look at the residuals

Fitting: Discriminating between models

Fitting: Discriminating between models

Best fitting model among least χ^2 models the one that has the lowest exc. variance

Fitting: Examples

Sérsic

Model

Model	$\chi^2_{ u}$	σ^2_{XS}	
(1)	(2)	(3)	
Sérsic	1.107	1.722(0.120)	
Sérsic + psfAgn	1.107	1.657(0.118)	
Sérsic + exDisk	1.107	1.770(0.121)	
Sérsic + psfAgn + exDisk	1.106	1.472(0.113)	

Data

Sérsic + psfAgn

Sérsic + exDisk

Bonfini et al. in prep.

Sérsic + psfAgn + exDisk

Fitting: Problems

However, method not ideal:

It is not calibrated

Cannot give significance

Fitting process computationally intensive

Require an alternative, robust, fast, method

 ${\rm S\acute{e}rsic}\,+\,{\rm psfAgn}\,+\,{\rm exDisk}$

Problem 3

Source Classification (a) Stars

Relative strength of lines discriminates between different types of stars

Currently done "by eye" or by cross-correlation analysis

Would like to define a quantitative scheme based on strength of different lines.

Maravelias et al. in prep.

Not simple....

- Sparse sampling
- Continuous distribution of parameters in training sample (cannot use clustering)
- Uncertainties and intrinsic variance in training sample

Problem 3

Source Classification (b) Galaxies

Classifying galaxies

Classifying galaxies

Basically an empirical scheme

- Multi-dimensional parameter space
- Sparse sampling but now large training sample available
- Uncertainties and intrinsic variance in training sample

Use observations to define locus of different classes

Classifying galaxies

- Uncertainties in classification due to
 - measurement errors
 - uncertainties in diagnostic scheme
- Not always consistent results from different diagnostics
- Use ALL diagnostics together
 Obtain classification with a confidence interval

- But more difficult
 - We do not have well defined grid
 - Grid is not continuous

		N _H					
		0.250 - 0.500	0.125 – 0.250	0.075 – 0.125	0.050 - 0.075	0.025 – 0.050	0.010 - 0.025
Г	1.75 - 2.00	11.36%	13.93%	3.35%	1.00%	0.53%	0.24%
	1.50 - 1.75	5.56%	13.70%	5.99%	$\mathbf{2.34\%}$	1.70%	0.67%
	1.25 - 1.50	1.80%	7.76%	5.61%	3.11%	$\mathbf{2.82\%}$	1.56%
	1.00 - 1.25	0.38%	$\mathbf{2.71\%}$	$\mathbf{2.87\%}$	$\mathbf{2.26\%}$	$\mathbf{2.33\%}$	1.58%
	0.75 - 1.00	0.07%	0.54%	0.82%	0.75%	1.00%	0.81%
	0.50 - 0.75	0.01%	0.09%	0.15%	0.18%	0.23%	0.17%

-1.0

Taeyoung Park's thesis

-0.5

log(S/M)

0.0

Summary

- Model selection in multi-component 2D image fits
- Joint fits of datasets of different sizes
- Classification in multi-parameter space
 - Definition of the locus of different source types based on sparse data with uncertainties
 - Characterization of objects given uncertainties in classification scheme and measurement errors

All are challenging problems related to very common data analysis tasks.

Any volunteers ?