Three data analysis problems

Andreas Zezas

University of Crete
CfA

Two types of problems:

- Fitting
- Source Classification

Fitting: complex datasets

Fitting: complex datasets

Fitting: complex datasets

Fitting: complex datasets

Iterative fitting may work, but it is inefficient and confidence intervals on parameters not reliablể

How do we fit jointly the two datasets?

VERY common problem!

Problem 2

Model selection in
2D fits of images

A primer on galaxy morphology

Three components:
spheroidal

$$
I(R)=I_{e} \exp \left[-7.67\left[\left(\frac{R}{R_{e}}\right)^{1 / 4}-1\right]\right]
$$

exponential disk

$$
I(R)=I_{0} \exp \left(\frac{r}{r_{h}}\right)
$$

and nuclear point source (PSF)

Fitting: The method

Use a generalized model

$$
I(R)=I_{e} \exp \left[-k\left[\left(\frac{R}{R_{e}}\right)^{1 / n}-1\right]\right] \begin{aligned}
& n=4: \text { spheroidal } \\
& n=1: \text { disk }
\end{aligned}
$$

Add other (or alternative) models as needed
Add blurring by PSF
Do x^{2} fit (e.g. Peng et al., 2002)

$$
\begin{gathered}
\chi_{\nu}^{2}=\frac{1}{N_{\mathrm{dof}}} \sum_{x=1}^{n x} \sum_{y=1}^{n y} \frac{\left(\text { flux }_{x, y}-\operatorname{model}_{x, y}\right)^{2}}{\sigma_{x, y}^{2}} \\
\operatorname{model}_{x, y}=\sum_{\nu=1}^{n f} f_{\nu, x, y}\left(\alpha_{1} \ldots \alpha_{n}\right)
\end{gathered}
$$

Fitting: The method

Typical model tree

$$
I(R)=I_{e} \exp \left\lceil-k\left[\left(\frac{R}{R_{e}}\right)^{1 / n}-1\right]\right]
$$

Fitting: Discriminating between models

Generally x^{2} works
BUT:
Combinations of different models may give similar x^{2}

How to select the best model ?
Models not nested: cannot use standard methods
Look at the residuals

Fitting: Discriminating between models

Fitting: Discriminating between models

Excess variance

$$
\sigma_{X S}^{2}=\sigma_{o b j}^{2}-\sigma_{s k y}^{2}
$$

Best fitting model among least x^{2} models the one that has the lowest exc. variance

Fitting: Examples

Fitting: Problems

However, method not ideal:
It is not calibrated

Cannot give significance
Fitting process computationally intensive

Require an alternative, robust, fast, method

Sérsic + exDisk

Problem 3

Source Classification

(a) Stars

Classifying stars

Relative strength of lines discriminates between different types of stars

Currently done "by eye" or by cross-correlation analysis

Classifying stars

Would like to define a quantitative scheme based on strength of different lines.

Classifying stars

Maravelias et al. in prep.

Classifying stars

Not simple....

- Multi-parameter space
- Degeneracies in parts of the parameter space
- Sparse sampling
- Continuous distribution of parameters in training sample (cannot use clustering)

- Uncertainties and intrinsic variance in training sample

Problem 3

Source Classification
 (b) Galaxies

Classifying galaxies

Classifying galaxies

Kewley et al. 2006

Classifying galaxies

Basically an empirical scheme

- Multi-dimensional parameter space
- Sparse sampling - but now large training sample available
- Uncertainties and intrinsic variance in training sample

\rightarrow Use observations to define locus of different classes

Classifying galaxies

- Uncertainties in classification due to
- measurement errors
- uncertainties in diagnostic scheme
- Not always consistent results from different diagnostics
\rightarrow Use ALL diagnostics together

Maragoudakis et al in prep.
\rightarrow Obtain classification with a confidence interval

Classification

- Problem similar to inverting Hardness ratios to spectral parameters
- But more difficult
- We do not have well defined grid
- Grid is not continuous

		N_{H}					
		0.250-0.500	0.125-0.250	0.075-0.125	0.050-0.075	0.025-0.050	0.010-0.025
Γ	1.75-2.00	11.36\%	13.93\%	3.35\%	1.00\%	0.53\%	0.24\%
	1.50-1.75	5.56\%	13.70\%	5.99\%	2.34\%	1.70\%	0.67\%
	1.25-1.50	1.80\%	7.76\%	5.61\%	3.11\%	2.82\%	1.56\%
	1.00-1.25	0.38\%	2.71\%	2.87\%	2.26\%	2.33\%	1.58\%
	0.75-1.00	0.07\%	0.54\%	0.82\%	0.75\%	1.00\%	0.81\%
	0.50-0.75	0.01\%	0.09\%	0.15\%	0.18\%	0.23\%	0.17\%

Taeyoung Park's thesis

Summary

- Model selection in multi-component 2D image fits
- Joint fits of datasets of different sizes
- Classification in multi-parameter space
- Definition of the locus of different source types based on sparse data with uncertainties
- Characterization of objects given uncertainties in classification scheme and measurement errors

All are challenging problems related to very common data analysis tasks.

Any volunteers?

