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Statistical Analysis of Stellar Evolution

I Statistical analysis of stellar evolution relies on complicated models of the
physical aging processes of stars

I Like a sampling distribution, these models predict observed quantities as a
function of unknown parameters
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I These models vary in complexity: some are solutions of coupled partial
differential equations, some have simple analytic expressions

I We use tabulated versions of the more complex models, evaluated over a
grid of parameter values



Opening the Black Box

I Typically treat computer models as deterministic black box models

I We want to open the black box and see what the data can tell us about
internal model components
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I What can we learn about the processes of stellar evolution from
observations of star clusters?

I We focus on the mass loss that stars experience along the way to their
final stage as white dwarfs



Evolution of a Sun-like Star

1. Main sequence
I powered by hydrogen fusion

2. Red giant
I no more hydrogen fuel, so the star cools and swells and sheds its outer layers

3. Planetary nebula
I remaining hot core ionizes the outer layers that have been ejected

4. White dwarf
I once the outer layers are gone, the hot, dense core remains



Initial-Final Mass Relation (IFMR)

I White dwarf mass < progenitor star mass

I The mapping between the progenitor mass and the white dwarf mass is
called the initial-final mass relation (IFMR)

I Key ingredient in physics-based models of stellar evolution

I Interesting complication: relationship between two unobserved quantities
(only one even observable)



Data

I Observe stars through different photometric filters

I Focus on clusters of stars with the same age, chemical composition
(metallicity), distance, absorption

I Stars have different initial masses

I Initial masses govern their rates of evolution → see a snapshot of stars in
different stages of evolution
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Basic Likelihood
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I Yi = vector of observed magnitudes through different filters

I Mi = the mass of star i

I θ = vector of cluster parameters

I GMS/RG(Mi ,θ) = the stellar evolution model for main sequence stars

I Observational uncertainties Σi assumed known

I Gaussian errors:
Yi |Mi ,θ,α,Σi

indep∼ N(µi ,Σi ),

µi = GMS/RG(Mi ,θ) if star i is a main sequence star



Basic Likelihood

I f (Mi ,α) = the initial-final mass relation

I α = vector of IFMR parameters

I GWD(Mi ,θ,α) = the stellar evolution model for white dwarfs

I Gaussian errors:
Yi |Mi ,θ,α,Σi

indep∼ N(µi ,Σi ),

µi =

{
GMS/RG(Mi ,θ) if star i is a main sequence star

GWD(Mi ,θ,α) if star i is a white dwarf



Binaries and Field Stars

Binary Systems

I Between 1/3 and 1/2 of stars are binary systems that appear as one star

I Luminosities of component stars sum

I Magnitude = −2.5 log10(luminosity)

I For main sequence-main sequence binaries,

µij = −2.5 log10

(
10−GMS/RG,j (Mi1,θ)/2.5 + 10−GMS/RG,j (Mi2,θ)/2.5

)
I All main sequence stars are modeled as binaries

Field Stars

I Appear in observational field of view, but not part of cluster

I Mixture model, with field stars assumed uniformly distributed in
magnitude space
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Component Computer Models

I If star is a white dwarf, the MS/RG computer model returns how long it
lived as a main sequence and red giant star (the progenitor age).

φprog age = FMS/RG(θ[Fe/H],M)

I The white dwarf cooling model computes the effective temperature and
radius of the star as a function of its cooling age (total age minus
progenitor age) and its current mass.

(φTeff , φradius) = Fcooling(θage − φprog age,MWD)



Component Computer Models

I The log of the gravitational force experienced at the surface of the white
dwarf is computed using Newton’s law:

φlog g = log10(G MWD/φradius
2)

I The white dwarf atmosphere model uses the surface gravity and the
effective temperature to derive the emergent spectrum of the star’s
atmosphere as a function of wavelength. The model then integrates the
emergent spectrum over the filter response to calculate the modeled
magnitudes.

µ = Fatmosphere(φTeff , φlog g )



Component Computer Models

φprog age = FMS/RG(θ[Fe/H],M)

(φTeff , φradius) = Fcooling(θage − φprog age,MWD)

φlog g = log10(G MWD/φradius
2)

µ = Fatmosphere(φTeff , φlog g )
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Component Computer Models

φprog age = FMS/RG(θ[Fe/H],M)

(φTeff , φradius) = Fcooling(θage − φprog age,MWD)

φlog g = log10(G MWD/φradius
2)

µ = Fatmosphere(φTeff , φlog g )



Parameterizing the IFMR

I We let the IFMR be a deterministic function of the initial mass M and
parameters α:

MWD = f (M,α)

I We primarily consider a linear IFMR

I Simple functional forms are reasonable because visible white dwarfs in any
particular cluster will typically span a relatively narrow range of initial
masses
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Prior Distributions

I Primary mass:

log10(mass) ∼ N(−1.02, 0.6772) , 0.1M� < mass < 8.0M�

based on population distribution

I Uniform on the ratio of smaller to larger mass

I Uniform on log10(age) between limits of stellar evolution models

I Cluster membership prior probabilities come from external information
(when available)

I Informative priors on metallicity, distance, and absorption

I Prior distribution on the IFMR parameters α is uniform on the region
corresponding to monotonically increasing IFMRs



Statistical Computation

I At least 3N + 3 parameters for cluster with N stars

I Local modes based on choices of cluster members vs field stars

I Joint posterior

p(θ,α,M,R,Z | Y) ∝ p(θ,α)
N∏
i=1

{
[πipc(Yi | Mi ,Ri ,θ,α)pc(Mi ,Ri )]Zi ×

[(1− πi )pf (Yi )pf (Mi ,Ri )]1−Zi

}
I Z = vector of cluster membership indicators
I πi = prior probability of cluster membership for star i
I R = vector of ratios of secondary to primary mass
I pc = cluster star likelihood or prior
I pf = field star likelihood or prior



Statistical Computation

I Marginal posterior

p(θ,α | Y) =

∫
· · ·
∫ ∑

Z1

· · ·
∑
ZN

p(θ,α,M,R,Z | Y)

 dMdR

∝ p(θ,α)
N∏
i=1

{
πi

∫ ∫
pc(Yi | Mi ,Ri ,θ,α)pc(Mi ,Ri )dMidRi +

(1− πi )pf (Yi )

}
I Because of conditional independence, marginalizing out nuisance

parameters involves lots of 1- and 2-dimensional integrals over compact
regions (e.g. Mi ∈ [0.15, 8.0], Ri ∈ [0, 1]), which can be numerically
approximated in parallel

I Use MCMC on the lower dimensional (θ,α)



Sensitivity to Misspecification

I Deterministic models GMS/RG are assumed known, but there are
uncertainties, different implementations, etc.

I Performed a simulation to test the sensitivity of inferences to
misspecification of GMS/RG

I Used the models of Yi et al. (2001) and Dotter et al. (2008)

I Simulated eight clusters under both sets of models at different ages using
the linear IFMR of Williams et al. (2009):

MWD = 0.339 + 0.129M

I Fit the clusters using both sets of models and a linear IFMR
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Data Analysis

I Analyzed three clusters: NGC 2477, the Hyades, and M35

I Results for NGC 2477 and the Hyades under both the Yi et al. (2001) and
Dotter et al. (2008) models

I Results for M35 under the Yi et al. (2001) models (M35 is too young for
the Dotter et al. (2008) models)



Initial and Final Mass Inferences
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Sensitivity of NGC 2477 Inferences to IFMR Model
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Sensitivity of NGC 2477 Inferences to IFMR Model
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Sensitivity of Hyades Inferences to Error Model
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