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Introduction

Introduction: Data and Project Goal

o Data:

e Y, observed photon counts, contaminated with background in a source
exposure.
e X, observed photon counts in the exposure of pure background .

@ Goals of the Project:

e To develop a fully Bayesian model to infer the distribution of the
intensities of all the sources in a population
e To identify the existence of dark sources in the population

2/20



Bayesian Model

A Brief Review: Bayesian Model

o Level | model:

X|€ ~ Pois(§),
Y; = Yig + Vis, where Yig|¢ ~ Pois(ai€),
1) if \; =0;
Yis|\i ~ Pois(biAj) ~ { |
Pois(biA;), if A # 0.

& is the background intensity,

Aj is the intensity of source /,

a; is ratio of source area to background area (known constant),
b; is the telescope effective area (known constant).
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Bayesian Model

A Brief Review: Bayesian Model

@ Level |l model:

=0, with probability 1 — 7;
)‘i|aa B, ™ . -
~ Gamma(a, ), with probability 7.

o Level Il model:

P(a, B8, m) x P(a, B).
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New Results

Weakly Informative Prior on a,

@ The prior distribution of «, 8 needs to be proper

@ We do not want the proper prior to be very informative
o o ,
o let u=—,60= 7 be the mean and variance parameters of the

Gamma distribution.

@ Weakly informative prior on p, 0:
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New Results

Weakly Informative Prior on a,
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New Results

Frequency Coverage: Simulation Setting 1

Observed data Y Underlying intensity A
8
o
<
3
° 2
N o
['e}
o o
[ T T T T 1 [ T T 1
0 10 20 30 40 50 0 10 20 30
Background data Yg Photons from the source Yg
g
3
S 2

0 50
—]
—
]
=
=

50

2 4 8 8 10 0 10 20 30 40 5/20



New Results

Frequency Coverage: Simulation Setting 1
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New Results

Frequency Coverage: Simulation Setting 2
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New Results

Frequency Coverage: Simulation Setting 2
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New Results

|dentifying the Existence of Dark Sources

@ Hypothesis Testing:
Hy:1—7m=0, H,:1—7>0.
@ Hp corresponds to My with the second level
Aila, B ~ Gamma(a, j3)
@ H, corresponds to M, with the second level

= with probability 1 — 7;

0,
)\i|aa ﬁ, ™ . -
~ Gamma(a, ), with probability 7.
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New Results

Hypothesis Testing

@ Likelihood Ratio Test Statistics:

R— La(&mie, Buie, FmielY)
Lo(&mLE, BmLE]Y)

e What's the distribution of R or log(R) under Hy?

@ p-value is used to measure how likely we are to see a value of the test
statistics as extreme as the observed value under Hj.

p-value = P(R > R°|Hy)
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New Results

The Distribution of R under H,

@ Simulate N data sets Y'®P under Hy and compute R™P for each of
the N data sets.

@ P-value can be approximated by

#{i . RI_"EP > Robs}
N

p-value =~

@ However, we can not simulate data sets under Hy because a and 3
are unknown.

o Instead, we simulate Y ~ My with o, 3 ~ Py(a, 5| Y°P%). So the
resulted “p-value” is the posterior predictive p-value under the M.
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New Results

Calculation of R: Maximum likelihood under M,

@ Likelihood under Mjy:
Lo(a, B Y™P) :/P(wep,x\a,ﬁ)dx

T / gy (36 + BT
—— AN IS T \eTtd
8 (r(a) E € \/irep! 1

e EM algorithm (\'s are treated as missing data).
@ In the E-step, we need to find

T = E()_Ai|Y'®) and TS = E( Z/og )| YreP)
i=1
@ Simulation to estimate T(t) and T(t)
Gibbs sampling: )\,(. )~ P()\,-|a(t ,B(t), Y'Y i=1,---,n
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New Results

Calculation of R: Maximum likelihood under M,

oW in the EM algorithm Y in the EM algorithm observed log lik
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New Results

Calculation of R: Maximum likelihood under M,

e EM algorithm (\'s are treated as missing data)
e Gibbs sampling: A{Y) ~ P(\;|al®), B(1) 7(8) yrep)
@ However,

o Each step in the EM algorithm is very slow
o EM algorithm converges very slowly
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Calculation of R:

New Results

Maximum likelihood under M,
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New Results

A More Efficient Method to Calculate the Maximum
likelihood under M,

@ Observation: for a fixed 7w, the EM converges very fast.
@ A more efficient algorithm:

@ Explore the space of 7: fix 7w at a range of values my, 75, -+ , Tk and
compute the
Lk = La(&k’ ﬂ/ﬁ 7Tk| nyP)

@ Choose k* such that

k* = arg max Lo(é, Bk, k| Y'P)

© Doing the complete EM algorithm with starting points

7_(_(0) = ﬂ_k*aa(O) = &k*aﬁ(O) = Bk*
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New Results

A More Efficient Method to Calculate the Maximum
likelihood under M,
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New Results

Posterior Predictive P-value

histogram of Ia(&,ﬁ,a’ﬂyrep) - IO(&,ﬁ|yrep)
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posterior predictive p-value = P(log(R"™) > log(R°")) = 0.105
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New Results

MAP ~ MLE

posterior draws of mu posterior draws of theta posterior draws of 1-pi
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New Results

Model for dealing with Overlapping Sources

Y(é Y(52 + Y(b)

Yi(j,)k ~ Pois(b,',j,k)\i,k)’

where b; j = b; «Ci j k. bix is the effective area and ¢;j x is the expected
proportion of photons from source k counted in Y; ;
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New Results

Model for dealing with Overlapping Sources

Level | Model: Y,J_Y(S) Yy i=1 0 =1

Dl ~ Pois(ae),

Vi = Z Vick

Y(sk|>\, i ~ Pois(bij i Mik), k=1,---,n;,
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New Results

Simulation Results

35% n;'s are 1, 5% n;'s are 2 and 65% n;'s are 3.

alp a/[?)z 1-%
I -—
8 = g
o
s
o | e
@ o _
o | ©
[=9)
9 |
©
8 2 -
o |
< o _|
<
<
8 - g -
o - o - o - ]'L
I T T T T T 1 I T T T T T 1 I T T T 1
0 5 10 15 20 25 30 0 500 1500 2500 0.0 0.2 0.4 0.6 0.8

18/20



o

0

0.20 0.30

0.10

0.5 0.7 0.9

0.3

ﬁ\‘)

K62 My)

Maximum Likelihood under M, for the Real Data

0.012 0.014

6875.0 6875.4 0.010

6874.6

19/20



Posterior Distribution under M

posterior draws of alpha/beta posterior draws of alpha/beta’2
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