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Main objective

• Using observed stellar emission spectrum estimate the shape
of the DEM (differential emission measure)

• Use discrepancy between predicted and observed counts to
identify lines that were omitted in the atomic emission table.

Observed data:

• Data source is Chandra X-ray Telescope that observes counts
from active G-type binary Capella (LETG and MEG)

• Counts are recorded in a certain prespecified number of
channels with varying width (spectral resolution)
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Model: Parameters and latent variables

• Let Yobs
i ∼ Pois(ξi), where ξi is photon intensity in channel

i, i= 1 . . . I and ξi = ξsource
i + ξbkg

i

• Let λj be true intensities that correspond to each of J bins.

After taking into account distortion effect from the instrument
we get ξsource =Mdλ, where d is a vector of effective area or
ARF (censoring probability) and M is a JxI probability matrix
that represents RMF (blurring effect) with column sums =1.

• For Chandra LETGS the blurring effect can be described my
scaled t4 and vector d is known.



Motivation and model Gibbs sampler and EM setup Results for simulated and real data Challenges with Gibbs sampler

Model: Parameters and latent variables

• Let GC,k(T) be contribution function (or Jx2R matrix) coming
from continuum from element k at temperature T.

• Let GL,k(T) be contribution function (or matrix) coming from
all lines of element k at temperature T.

• γ - abundance (Kx1 vector), µ - DEM (2Rx1 vector)

• Each true bin intensity consists of λj = λC
j + binned{λL

l } ,

where λC
j =

∑

kλ
C,k
j and λL

l =
∑

kλ
L,k
l

λC,k
j ∝ γkGC,kµ and λL,k

l ∝ γkGL,kµ.
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Illustration of step-by-step data degradation

Figure: Illustration of the convolution of counts with continuum
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Illustration of step-by-step data degradation

Figure: Exaggerated illustration of stochastic censoring, blurring and
background contamination
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Method: Data augmentation
• Final model for channel intensities is

ξ=Md

 

∑

k

γk

¦

GC,k+ binned
�

GL,k
�©

!

µ+ ξbkg

• The following latent variables are defined:
Y1:I - background-free channel counts
Z−1:J - censored bin counts
Z1:J - bin counts
ZL

1:J - counts generated by binned lines (vs. ZC
1:J corresponding

to continuum)
ZL

1:L - counts generated by each line separately

U−,k
1:T - counts from continuum in each temperature bin but

”censored” (for element k)
Uk

1:T - counts corresponding to continuum in temperature bins

V−,k
1:T , Vk

1:T - counts coming from all lines of element k
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Method: Data augmentation

• Joint posterior for the augmented model is

p(γ,µ, V, V−, U, U−, Z, ZL
1:J, ZL

1:L, Z−, Y|Yobs)∝
∝ p(γ,µ)p(V|γ)p(V−|V)p(U|µ)p(U−|U)p(Z|U−)

p(ZL
1:J|Z)p(Z

L
1:L|Z

L
1:J)p(Z

−|Z)p(Y|Z−)p(Yobs|Y) (1)

• Flat conjugate prior distributions were assigned to
γk ∼ Gamma(1,0)
• DEM µ is being smoothed using multiscale analysis, therefore

the prior is
µ0,0 ∼ Gamma(1,0) - parameter for the overall sum
ρr,k ∼ Beta(αr,αr) - splitting factors
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Gibbs steps

Updating latent variables:

1. Yi|Yobs
i ,ξsource

i ,ξbkg
i ∼ Binomial

�

Yobs
i ,

ξsource
i

ξ
bkg
i +ξ

source
i

�

, i= 1, . . . , I

2. Z−j |Y, M, d,λ∼
∑

i Multinomial
�

Yi,
(M1id1λ1,...,MJidJλJ)

∑

j(Mjidjλj)

�

since ξsource =Mdλ, we get Z−j ∼ Pois(djλj)

3. Zj|Z−j , dj,λj ∼ Z−j + Pois((1− dj)λj), j= 1, . . . , J
so that Zj ∼ Pois(λj)
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Gibbs steps

Updating latent variables:

4. ZL
j |Zj,λ

L,λC ∼ Binomial
�

Zj,
λL

j

λL
j +λ

C
j

�

, j= 1, . . . , J

5. (ZL
l1, . . . , ZL

lj)|Z
L
j ,λL

1:L,λL
1:J ∼Multinomial

�

ZL
j ,
(λL

l1,...,λL
lj)

∑

h(λ
L
lh)

�

, j=

1, . . . , J, line l is in bin j

(in EM these steps will be replaced by corresponding expected
values)
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Gibbs steps
Updating latent variables:

4. Define ck
t to be column sums for Gk,C with ck

∗ =maxt{ck
t } and

G̃k,C = Gk,C/ck
∗.

Remember that λk,C = γkGk,Cµ. Then

U−,k
t |Z

L
1:J, G∗c ∼

∑

j

Multinomial

�

ZL
j ,
(G̃k,C(j, 1)µ1, . . . , G̃k,C(j, T)µT)

∑

t G̃k,C(j, t)µt

�

such that each U−,k
t |µt, ck ∼ Pois(ck

tµt)∼ Pois(c̃k
t ck
∗µt)

5. In order to bring all counts to the same scale we use the same
idea as in ”decensoring”:
Uk

t |U
−,k
t , ck,µt ∼ U−,k

t + Pois((1− c̃k
t )c

k
∗µt), t= 1, . . . , T after

that Uk
t |µt, ck ∼ Pois(ck

∗µt)
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Gibbs steps
Updating latent variables:

4. The same method is applied to get V−,k
t |µt ∼ Pois(lktµt) and

Vk
t |µt ∼ Pois(lk∗µt), where lkt is column sums for Gk,L, etc.

5. Then we calculate Ut =
∑

k

�

Uk
t + Vk

t

�

∼ Pois(g∗µt)
where g∗ =

∑

k γk

�

ck
∗ + lk∗

�

6. Counts U1:T go through multiscale smoothing.

Figure: Binary Tree for Multiscale analysis (Nowak, Kolaczyk (2000))
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Gibbs steps

Updating parameters:

• γk is updated using line counts ZL
1:L (after step 5):

γk|ZL
l1

, . . . , ZL
lnk

,µ∼ Gamma

 

∑

h

ZL
lh
+ 1

!

/
∑

h

λL
lh

where λL
l =
∑

t Gk,L
lt µt and ZL

l1
. . . ZL

lnk
are lines corresponding to

element k

• DEM is updated after multiscale smoothing procedure
µt ∼ Gamma(Usmoothed

t + 1)/g∗, t= 1, . . . , T.

(in EM these steps will be replaced by corresponding posterior
modes to get MAP values)
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Normalized effective area (ARF) for simulated and
Chandra LETGS data
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Figure: Effective area (”censoring probability”) for Low Energy
Transmission Spectrometer (LETGS) on Chandra
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Normalized ”censoring” probabilities l̃k1:T
(within 3 . . . 30A)
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Figure: Counts at short wavelengths don’t give us enough information
about DEM below 106K
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Three EM calculations for simulated data
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Figure: MAP values for µ with moderate smoothing αr = 4 and different
starting values for γ and µ
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Results for simulated data: Residuals
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Results for simulated data: Abundance
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Figure: Red dots represent true values, lines (green, brown and blue)
show results from three EM runs
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Results for simulated data: Spectrum
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Figure: Estimated expected intensity ξ1:J (orange) superimposed on
actual counts (black)
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Data available for analysis

• Spectrum of Capella collected using Chandra’s HRC-S (High
Resolution Camera) with the LETGS diffraction grating (Low
Energy Transmission Grating Spectrometer), wavelength
range 3− 160A and channel width 0.0125A.

• High resolution spectrum of Capella collected using Chandra’s
ACIS-S (Advanced CCD Imaging spectrometer) with MEG
diffraction grating (Medium Energy Grating), effective
wavelength range 2− 30A and bin width 0.005A.

(First dataset was used by Hosung Kang (PhD thesis (2005)) and
we seek to replicate results as well as compare them to the ones
from the new dataset)
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Observed data: LETGS
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Figure: Observed counts obtained from Low Energy Transmission
Spectrometer (LETGS) on Chandra
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Normalized effective area (ARF) for Chandra LETGS data
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Figure: Effective area (”censoring probability”) for Low Energy
Transmission Spectrometer (LETGS) on Chandra
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Observed data: MEG
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Figure: Observed counts obtained from Medium Energy Grating (MEG)
on Chandra
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Normalized effective area (ARF) for Chandra MEG data
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Figure: Effective area (”censoring probability”)for Medium Energy
Grating (MEG) on Chandra
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Relevant ranges for LETGS and MEG together
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Results for LETGS and MEG: DEM
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Figure: MAP values for µ. Three bottom lines correspond to three EM
runs on LETGS data and top lines correspond to EM ran on MEG data
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Results for LETGS and MEG: Abundance
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Figure: Results for abundance estimation for two data sources
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Identifying missing lines using model output

• Atomic physicists continue discovering/calculating/identifying new lines
for atoms of different chemical elements, but calculations are prone to
errors. Many minor lines are not present in compiled databases but will
show up in the observed spectrum.

• There were several attempts in the past to compare observed spectrum to
the expected one (based on current theoretical models). For example, J.-U.
Ness at al. (2003) studied the region around NeIX lines at 13.5A that is
significantly blended by iron lines.

• The idea is to use DEM model output (residuals vs. estimated intensity)
from a wider spectrum range to infer about possibly missing or misplaced
sets of lines.

We can start with the simulated model and see how it reacts to omitting
strong or weak lines (of course, our inference is limited by the binned
structure of the data).
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Simulated counts for 13..14A region
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Figure: Black spectrum corresponds to simulated counts using all lines
and blue spectrum corresponds to counts generated from the model with
14 missing Fe lines around 13.48A (all lines within two chosen bins)



Motivation and model Gibbs sampler and EM setup Results for simulated and real data Challenges with Gibbs sampler

Simulated counts for 13..14A region
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Figure: (a)Black spectrum is the same and orange spectrum corresponds to intensities ξ1:J estimated using the
model with 14 missing Fe lines around 13.48A. (b)Bottom graphs shows standardized residuals, out of 2160 channels,
only these 3 were beyond 4σ (and only 0.14 are expected to be beyond 4σ).
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Results for MEG data
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Figure: Estimated expected intensity ξ1:J (orange) superimposed on
actual counts (black)
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Results for MEG data
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Figure: Standardized residuals. Given the number of bins (5400), we
expect 0.34 of them to be greater then 4σ, but we get 486 (9%)
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Poorly fitted regions with small bluring SD = 0.005
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Same regions using bigger bluring SD = 0.01

10.5 11.0 11.5 12.0 12.5

0
20

0
40

0
60

0
80

0
10

00

Wavelength

C
ou

nt
s

13.5 14.0 14.5 15.0

0
10

00
20

00
30

00
40

00
50

00

Wavelength

C
ou

nt
s



Motivation and model Gibbs sampler and EM setup Results for simulated and real data Challenges with Gibbs sampler

Another region that is affected by SD increase in an
opposite way
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Possible model improvements before providing
suggestions regarding missing lines

• The issue with overdispersion may occure due to
• varying RMF (by flux size)
• line shift caused by the telescope
• errors of omission and commission in emissivity databases and

by the source (Doppler effect)

• After obtaining a reasonable fit we can look at Nσ outliers
and get a range for possibly missing lines.
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Challenges in the Gibbs sampler
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Figure: 95% posterior intervals for DEM from two simulations with
10000 iterations (and 5000 droped)
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Two chains combined
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Figure: Combined chains cover almost all MAP values
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Results for abundance for simulated data
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Figure: Histograms corresponding to the first chain (second chain gave
similar results)
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Convergence asesement for abundance: Chains

Figure: Chains for four chosen elements
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Convergence result for abundance: ACF
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Convergence issues with DEM: Chains

Figure: Chains for four chosen temperature points
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Convergence issues with DEM: ACF
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Figure: ACF for four chosen temperature points
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Possible problematic steps in Gibbs sampler

”Desencoring” steps

Uk
t |U
−,k
t , ck,µt ∼ U−,k

t + Pois((1− c̃k
t )c

k
∗µt), t= 1, . . . , T

Vk
t |V
−,k
t , lk,µt ∼ U−,l

t + Pois((1− l̃kt )l
k
∗µt), t= 1, . . . , T

such that Uk
t |µt, ck ∼ Pois(ck

∗µt) ∀t and Vk
t |µt, lk ∼ Pois(lk∗µt) ∀t

Low c̃k
t and l̃kt values cause high autocorrelation between

iterations.
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Normalized ”censoring” probabilities l̃k1:T
(within 3 . . . 30A)
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Figure: Counts at short wavelengths don’t give us enough information
about DEM below 106K
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