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Abstract

The analysis of extremely large, complex datasets is becoming
an increasingly important task in the analysis of scientific data.
This trend is especially prevalent in astronomy, as large-scale
surveys such as SDSS, Pan-STARRS, and the LSST deliver (or
promise to deliver) terabytes of data per night. While both the
statistics and machine-learning communities have offered
approaches to these problems, neither has produced a
completely satisfactory approach. Working in the context of
event detection for the MACHO LMC data, I will present an
approach that combines much of the power of Bayesian
probability modeling with the the efficiency and scalability
typically associated with more ad-hoc machine learning
approaches. This provides both rigorous assessments of
uncertainty and improved statistical efficiency on a dataset
containing approximately 20 million sources and 40 million
individual time series. I will also discuss how this framework
could be extended to related problems.
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What is massive data?

In short, it’s data where our favorite methods stop working

We have orders of magnitude more observations than we are
used to dealing with, often combined with high dimensionality
(e.g. 40 million time series with thousands observations each)

This scale of data is increasingly common in fields such as
astronomy, computational biology, ecology, etc.

There is an acute need statistical methods that scale to these
quantities of data

However, we are faced with a tradeoff between statistical rigor
and computational efficiency
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Machine Learning methods: strengths & weaknesses, in
broad strokes

Strengths:

Such method are typically very computationally efficient and
scale well to large datasets
They are relatively generic in their applicability
Machine learning methods often “just work” (quite well) for
tasks such as classification and prediction with clean data

Weaknesses:

ML methods do not usually provide built-in assessments of
uncertainties
A lack of application-specific modeling often means that data
is not used as efficiently as possible
Machine learning methods are typically unprincipled from a
statistical perspective
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Statistical methods / Probability models: strengths &
weaknesses, in broader strokes

Strengths:
These methods are built upon on sound theoretical principles
We can build complex probability models appropriate to the
particular application, incorporating detailed scientific
knowledge
Statistical methods can provide rigorous, built-in assessments
of uncertainties

Weaknesses:
Computation often scales very poorly with the size of the
dataset (O(n2) or worse, especially for complex hierarchical
models)
While application-specific modeling can be a great strength of
this approach, complex structure in the data can require an
infeasibly large amount of case-specific modeling
Computation for these models often does not parallelize well
(for example, MCMC methods are inherently sequential to a
large extent)
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How can we get the best of both worlds?

Principled statistical methods are best for handling messy,
complex data that we can effectively model, but scale poorly
to massive datasets

Machine learning methods handle clean data well, but choke
on issues we often confront (outliers, nonlinear trends,
irregular sampling, unusual dependence structures, etc.)

Idea: Inject probability modeling into our analysis in the right
places
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Overview

The Problem

We have a massive database of time series (approximately 40
million) from the MACHO project (these cover the LMC for
several years)

Our goal is to identify and classify time series containing
events

How do we define an event?

We are not interested in isolated outliers. This differentiates
our problem from traditional “anomaly detection” approaches
and require more refined approaches.
We are looking for groups of observations that differ
significantly from those nearby (ie, “bumps” and “spikes”)
We are also attempting to distinguish periodic and
quasi-periodic time series from isolated events, as they have
very different scientific interpretations
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Overview

Exemplar time series from the MACHO project:

A null time series:
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Overview

Exemplar time series from the MACHO project:

An isolated event (microlensing):
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Overview

Exemplar time series from the MACHO project:

A quasi-periodic time series (LPV):
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Overview

Exemplar time series from the MACHO project:

A variable time series (quasar):
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Overview

Exemplar time series from the MACHO project:

A variable time series (blue star):
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Overview

Notable properties of this data

Fat-tailed measurement errors
These are common in astronomical data, especially from
ground-based telescopes (atmospheric fluctuations are not kind
to statisticians)
Thus, we need more sophisticated models for the data than
standard Gaussian approaches

Quasi-periodic and other variable sources
These changes the problem from binary classification (null vs.
event) to k-class
So, we need more complex test statistics and classification
techniques

Non-linear, low-frequency trends confound our analysis further
and make less sophisticated approaches (ie those without
careful detrending) far less effective
Irregular sampling is the norm in this data. If handled
incorrectly, this can create artificial events
Oh my!
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Overview

Previous approaches to event detection

Scan statistics are a common approach (Liang et al, 2004;
Preston & Protopapas, 2009)

However, they often discard data by working with ranks and
account for neither trends nor irregular sampling

Equivalent width methods (a scan statistic based upon local
deviations) are common in astrophysics

However, these rely upon Gaussian assumptions and crude
multiple testing corrections

Numerous other approaches have been proposed in the
literature, but virtually all rely upon Gaussian distributional
assumptions, stationarity, and (usually) regular sampling
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Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps



Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion

Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps



Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion

Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps



Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion

Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps



Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion

Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps



Outline Challenges of Massive Data Combining approaches Application: Event Detection for Astronomical Data Conclusion

Overview

Our approach

We use a Bayesian probability model for both initial detection
and to reduce the dimensionality of our data (by retaining
posterior summaries)

Using these posterior summaries as features, apply a ML
classification technique to differentiate between events,
variables, and null time series

Symbolically, let V be the set of all time series with variation
at an interesting scale (ie, the range of lengths for events),
and let E be the set of events

For a given time series Yi , we are interested in P(Yi ∈ E )

We will decompose this probability (conceptually) as
P(Yi ∈ E ) = P(Yi ∈ V ) · P(Yi ∈ E |Yi ∈ V )

using the above two steps
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Proposed method

Probability model

We assume a linear model for our observations:
Y = X`β` + Xmβm + u

We assume that our residuals ut are distributed as iid
tν(0, σ2) random variables to account for extreme residuals
(we set ν = 3).

X` contains the low-frequency components of a wavelet basis,
and Xm contains the mid-frequency components

We use a Symmlet 4 (aka Least Asymmetric Daubechies 4)
wavelet basis; it’s profile matches the events of interest quite
well
For a basis of length 2048, we build X` to contain the first 8
coefficients; Xm contains the next 120

Idea: X` will model structure due to trends, and Xm will
model structure at the scales of interest for events
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Proposed method

Probability model

Y = X`β` + Xmβm + u

We explicitly account for irregular sampling in our time series
by stretching our basis to total observation time of our data
and
We place independent Gaussian priors on all coefficients
except for the intercept to reflect prior knowledge and
regularize estimates in undersampled regions
We use the optimal data augmentation scheme of Meng &
Van Dyk (1997) with the EM algorithm to fit our model
(average time for a full estimation procedure is ≈ 0.4 seconds
including file I/O, using the speedglm package in R)
We use a likelihood ratio statistic to test for the presence of
variation at the scales of interest (testing βm = 0). We use a
modified Benjamini-Hochberg FDR procedure to set the
threshold for further analysis.
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Examples of model fit

The idea is that, if there is an event at the scale of interest, there
will be a large discrepancy between the residuals using Xm and X`:
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Proposed method

Results of likelihood ratio test via FDR

Awaiting completion of computations
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Proposed method

Distribution of likelihood ratio statistic

To assess how well this statistic performs, we simulated
50, 000 events from a physics-based model and 50, 000 null
time series
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Proposed method

Distribution of likelihood ratio statistic

We then added approximately 60,000 time series from known
variable stars

It should be noted that there is an extremely long right tail on
the distribution of log-likelihood ratios for variable sources
(extending out to approximately 8, 000) that is not shown
here; it is why additional steps are needed
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Proposed method

A sidenote: Why not use a Bayes factor?

Given our use of Bayesian models, a Bayes factor would
appear to be a natural approach for the given testing problem

Unfortunately, these do not work well with “priors of
convenience”, such as our Gaussian prior on the wavelet
coefficients

Because of these issues, the Bayes factor was extremely
conservative in this problem for almost any reasonable prior
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Proposed method

Distribution of Bayes factor
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Proposed method

Classification

We use the estimated wavelet coefficients β̂m (normalized by√
τ̂) as features for classification

These provide a rich, clean representation of each time series,
following detrending and denoising (from our MAP
estimation)

To simplify our classification and make our features invariant
to the location of variation in our time series, we use as
features the sorted absolute values of our normalized wavelet
coefficients within each resolution level.
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Proposed method

Classification

We tested a wide variety of classifiers on our training data,
including kNN, SVM, LDA, QDA, and others. In the end,
regularized logisitic regression appeared to be the best
technique.

We obtained excellent performance (AUC = 0.98) on previous
training data for the seperation of

ROC for logistic regression classifier (10−fold CV)
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Proposed method

Classification

For the multiclass problem (null vs. event vs. variable), we are
testing three approaches: partially ordered logistic regression,
multinomial regression, and SVM

Results are currently awaiting further computation
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Results

Results

Computation has yet to complete, but the empirical
distribution of our likelihood ratio statistics (with the 10%
FDR threshold) is given below:
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Putting everything in its place: a mental meta-algorithm

Understand what your full (computationally infeasible)
statistical model is; this should guides the rest of your decision

Preprocess to remove the “chaff”, when possible

Be careful! Any prescreening must be extremely conservative
to avoid significantly biasing your results

Use approximations for the critical parts of your models (e.g.
empirical Bayes as opposed to full hierarchical modeling) to
maintain computational feasibility

Hyperparameters can be set based on scientific knowledge or
for mild regularization if each observation is sufficiently rich or
priors are sufficiently informative
Otherwise, a random subsample of the data can be used to
obtain reasonable estimates
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Putting everything in its place: a mental meta-algorithm

Using estimates from your probability model as inputs, apply
machine learning methods as needed (e.g. for large scale
classification or clustering). This maintains computational
efficiency and provides these methods with the cleaner input
they need to perform well

Use scale to your advantage when evaluating uncertainty

With prescreening, use known nulls
Without prescreening, use pseudoreplications or simulated data
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Summary

Massive data presents a new set of challenges to statisticians
that many of our standard tools are not well-suited to address
Machine learning has some valuable ideas and methods to
offer, but we should not discard the power of probability
modeling
Conversely, reasonably sophisticated probability models can be
incorporated into the analysis of massive datasets without
destroying computational efficiency if appropriate
approximations are used
It is tremendously important to put each tool in its proper
place for these types of analyses
Our work on event detection for astronomical data shows the
power of this approach by combining both rigorous probability
models and standard machine learning approaches
There is a vast amount of future research to be done in this
areas
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