QUANTIFYING, SUMMARIZING, AND

 REPRESENTING 'TOTAL' UNCERTAINTIES IN IMAGE (AND SPECTRAL) 'DECONVOLUTION'
A. Connors for 'CHASC' or CBASC

PART II: DOUBT

A. Connors for 'CHASC' or CBASC

INSIDE the source: Intrinsically Multinomial/Poisson?

`The immediate question arises as to the statistical significance of this feature... quantification of objectwise significance (e.g., "this blob is significant at the n-sigma level") are difficult.' (Dixon et al. 1998 New Astronomy 3, 539)

The immediate question arises as to the statistical significance of this feature... quantification of objectwise significance (e.g., "this blob is significant at the n-sigma level") are difficult.' (Dixon et al. 1998 New Astronomy 3, 539)

Tomographic Reconstruction: Comparing Examples (from Willett et al.)

Filtered back projection

Fessler's PWLS

Wedgelet reconstruction

What's the significance of / uncertainty on features?

Talk Outline (Parallel pieces):

0. What/Why: Demos, Definitions
1. What/Why: Problem Definition:
1.1 Goodness-of-fit and feature-detection
1.2 Mismatch significance, shape error bars
1.3 All uncertainties: instrument, physics
2. How/Why: History/Methods
2.1 Frequentist Multiscale, Bayesian Structure
2.2 DA/MCMC
2.3 Comparisons of Null (simulations) vs Data
3. Current Examples

Varying signal to noise: "E" and Gamma-ray sky
4. Current Challenges

How/Why: History/Methods

* Putting Flexible/Multiscale 'NP' models
* Together with parametrized physics-based models
* Full Bayesian Posterior framework
* 'Likelihoodist' (Tanner); Priors ~ Complexity Penalty * Bayes allows Modularity: Data Augmentation, * Bayes allows complex, high-dimensions: MCMC

Multiplicative Multiscale Innovation Models

Timmermann \& Nowak, 1999 Kolaczyk, 1999

Multiplicative Multiscale Innovation Models

- Recursively subdivide image into squares
-Let $\{\rho\}$ denote the ratio between child and parent intensities
\bullet Knowing $\{\rho\} \Leftrightarrow$ Knowing $\{\lambda\}$
- Estimate $\{\rho\}$ from empirical estimates based on counts in each partition square

Usual Equations for 'True' Intensity, Instrument, Data:

$$
\begin{gathered}
S(l, b, e, t, \theta)=\text { Expected 'True' Source Intensity } \\
E(l, b, e, t, \varphi)=\text { 'True' Effective Area } \\
\operatorname{PSF}(x, y \mid l, b, e, t, \xi)=\text { 'True' instrument smearing } \\
\Lambda(x, y, e, t, \theta, \varphi, \xi)=\text { 'True' Expected counts in detector } \\
D(x, y, e, t, \theta, \varphi, \xi)=\text { measured counts in detector } \\
\Lambda(x, y, e, t, \theta, \varphi, \xi)=\operatorname{PSF}(x, y \mid l, b, e, t, \xi) @ E(l, b, e, t, \varphi)^{*} S(l, b, e, t, \theta) \\
D(x, y, e, t, \theta, \varphi, \xi) \quad \sim \text { Poisson }(\Lambda(x, y, e, t, \theta, \varphi, \xi))
\end{gathered}
$$

Usual Equations for 'Model' Intensity, Instrument, Data:
$s(l, b, e, t, \theta)=$ Expected 'Model' Source Intensity $\epsilon(l, b, e, t, \varphi)=$ 'Model' Effective Area
psf($x, y \mid l, b, e, t, \xi)=$ 'Model' instrument smearing
$\lambda(x, y, e, t, \theta, \varphi, \xi)=$ 'Model' Expected counts in detector $D(x, y, e, t, \theta, \varphi, \xi)=$ measured counts in detector

$$
\begin{gathered}
\lambda(x, y, e, t, \theta, \varphi, \xi)=p s f(x, y \mid l, b, e, t, \xi) @ \in(l, b, e, t)^{*} s(l, b, e, t, \theta) \\
D(x, y, e, t, \theta, \varphi, \xi) \sim \text { Poisson }(\lambda(x, y, e, t, \theta, \varphi, \xi))
\end{gathered}
$$

Our Equations for 'Model' Intensity, Instrument, Data:

$$
\begin{gathered}
s(l, b, e, t, \theta)=\text { Expected 'Physics Model' Source Intensity } \\
\longrightarrow m(l, b, e, t, \alpha, k)=\text { Expected Multiscale Source Counts } \\
\alpha=\text { Smoothing Parameters for each scale } \\
k=\text { 'Range' parameter for Hyper-priors on } \alpha \\
\beta=\text { 'Scale Factor' for Physics Model } \\
\epsilon(l, b, e, t, \varphi)=\text { Model' Effective Area } \\
p s f(x, y \mid l, b, e, t, \xi)=\text { 'Model' instrument smearing } \\
\lambda(x, y, e, t, \theta, \varphi, \xi)=\text { 'Model' Expected counts in detector } \\
D(x, y, e, t, \theta, \varphi, \xi)=\text { measured counts in detector } \\
\lambda(x, y, e, t, \theta, \varphi, \xi)=p s f(x, y l l, b, e, t, \xi) @ \\
\left(\beta^{*} \in(l, b, e, t)^{*} s(l, b, e, t, \theta)+m(l, b, e, t, \alpha, k)\right) \\
\uparrow
\end{gathered}
$$

3. Moderate Signal-To-Noise Examples:Gamma-Ray Sky:

3. Moderate Signal-To-Noise Examples:Gamma-Ray Sky:

> Null (.) vs Interesting (+)
> Log10(Baseline Scale Factor)
> Log10(Expected Residual Counts)
3. Moderate Signal-To-Noise Examples:Gamma-Ray Sky:

4. Moderate Signal-To-Noise Examples: 2 " ${ }^{\text {": }}$

4. Moderate Signal-To-Noise Examples: 2 " E ":

4. Moderate Signal-To-Noise Examples: 2 " ${ }^{\prime \prime}$ ": Null (.) vs Interesting (+)

3. Low Signal-To-Noise Examples: 2 " $\mathrm{E}^{\prime \prime}$:

5. Low Signal-To-Noise Examples: 2 " E ":

 Null (.) vs Interesting (+)
5. Low Signal-To-Noise Examples: 2 " E ":

2	2	4	6	8	10

DOUBT: Skeptical Astronomers: Basic Physics?? V. Kashyap, N. Brickhouse : Atomic physics uncertainy

I. A. Grenier, J. M Casandjian : "GALPROP" uncertainy

DOUBT: Skeptical Astronomers.....

J. Drake, et al. : ARF/RMF uncertainy

DOUBT: Skeptical Astronomers.....

M. Karovska on PSF Variations/Uncertainty:

Figure: Model PSFs for the HRC-I instrument at 1.4967 keV as a function of off-axis angles (log display); clockwise from the top, off-axis angles 0^{\prime} (on axis), $1 .{ }^{\prime} 5,6^{\prime}$, and 12^{\prime}. The size of the FOV is about 0.'5.

NEW CHALLENGES: Examples
(Mallory Roberts -Black Hole/Jet changes?)

NEW CHALLENGES: Examples SNR G11.2-0.3 changes with energy? Mallory Roberts

NEW CHALLENGES: Examples X-ray vs optical jet?? Herman Marshall

