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. DATA-PROJECTS

® PRight now have only ast mical data.
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COMPUTER SCIENSE-STATISTICS
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. COMPUTATIONAL QUESTIONS

i :

® | The sizes of data sets in astro , medicine and other fields are
presentlyf exploding. Th curve center needs to be prepared
for date S starting | O’s of giiaby es per night, scaling

up to teraBytes per nightbysthe end of the
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Physical Models

Phenomenology

Model individual
Extra-Solar Planet

Compare spectra of two
unfamiliar ohjects

Automation

!

Determine distribution
of sizes for ensemhble of
transits.
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Clustering Analysis
of Many Lightcurves

in space of models

outside space of models
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/ WHO
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Astron¢mers: C. Alcocm. DiStefano, C. Stubbs, P. Protopapas
CS: C.aBi@dley, R. Kh&lor], U. Rebbapragada

Computational: R. Daye | ‘

Statisticiar's: J. Rice

r 3




. PLAN - KEY TO SUCCESS
)

% | DATA DATA BATA DATA.

Key to succesSiSito get data scoveries can be made.

’ All the kings algorithms an@ésall the kir.gs h&@kdware can not put
discoverieSitogether.
-

PanStarrs is @ kel dataset. ’
Blan: 3 way

I

it tAeNElat@and par t@em ind madethem avai Iebpeo
alg@hithms By CS

i
e the quUEStionNs by ast

{

"‘C




/ DIR=VANY
i
How about if e first earth like 'anet outside the solar system were
discovelediat 11C ?

How about if tREMIrst extra terrest|4a| life was det‘cted from work at IIC ?

Dreaming ? T‘wer' IS as goaosl ?hance to be p@ftolthis as anybody else.
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/ Proj ects underway
A
Anomaly detection. ‘

1. i Few outliers‘
2. Class of outliers ‘

Extra Sola@planets

Tempm‘al slmmetrieshs.ymraetries '

Binary Al\ste[oids
1
Microléfsingisearchest

Moving ‘objects 'l
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/ Anomaly detection
A
Only per.odlc light curves .)r now.

t?%t : 3 s !
Need to W@fry about phase ;

Define simil@rity. Pair wiS€e@frelation. Adjust for observational error
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Construct llarity matrix

Find outliéfSiiweighted] averaging

3l | How many an ere to stop ?

Extension ompare to roid. Scales nicely but does not work

well with newell define ph

Extension 2: €ompare tomul




‘di fficulty: €ach pair has a an optinal relative phase.

sol uti on: #means, whi ch stands for Phased K-neans,

is a modificatioh of the k-means cl ustering algorithmwhich takes into

consi derat i on'the phasi ng of t!e tine-series. Scales as QN

Al gorithm 1 Pk- mear's( Li ght curves ’c, Iiurrber of centroids)
1: Initialize centroi ds cen

2: while not Convergence do 3;7

3: (closest centroids, rephrased_|ightcurves)? CalcD stance(lc, cen)
4: clusters ? AssenbleClusters(rephasedabightcurves, cl osest centroi ds)
‘ e'ds ? Recal (!Ceptroi‘js(cl ust ers)

5. centro
end while
return centroi ds : - ' =
' |
Algorithm 2 Calebi stance(Li ghtcurves |¢; Centroi ds €en) !
1: .for each Iigrtcurve | c do '
3: f48 eacf.centroi d €en do i "
' 4: (iorr, phase) ? Cal cCorrelati onUsi ngEET(lc, cen)
5: find max correlation ? best phase, closest centroid
10: end for | \ L
12:| Ic_pha91d ? Updat ePhase(l €, best phase)
13: end T‘r L | -

14. tetu n closest centroids, |c _phased

'
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Aﬁomaly detection-EXTENSIONS

Do the srme not just with¥@&kiodic light curves

Differenfipi@jections. Co.birle projections
i

For a projoction k& we denote the outher mensure for Lght-curve 1 as B

where N 18 the pumber of light-curees and 77 8 the pairwise correlation in projection k as defined
in Eq. 1. For light-curve ¢ we combine the R's from different projections by finding the weighted
mean of the individueal renks, The renk pf B the rank for light-eurve ¢ in the projection k. We

then defined our combined ranking in the follvwving w

where ng s the number of projections, wy 8 s weight that depends on bow distinet i E™projoction
is from the others, If two projections are the same, their corresponding weighis are 1/2. If on the
other hand a projection is unique then iis weight will be 1. A formal definition of w is given by:

a

1
% Ok
where Oy & the similarity between two projections. This can be defined in many different ways

but for the moment we wse Spearman's rank correlation to degeribe their correlation
'
f

| ¥

I"-_. e
N

where pf s the rank of lHght-curve 1 o projection k. If teo projections produce the same outlier
rankines then 5 1 if thev totally independert then O {
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Do the sFme not just with 'e'riodic light curves

Differentipi@jections. Co‘bir]e projections

P
Find outlier€lusters. Redefin® “outliers”.
Clusteriv‘g n.ethods. *3 :

¢

>Vl Neegda statiStical teSHOI \Btriability. I‘m using .J

waveletiflec@mposition®All cogfficients Mlist lie zero. .




Transi} method-Extra solar planets sear ches

Looking fgr planets at other‘olar systems. Transit method when a
planet go&s |n front of thesStalthe light from the star is blocked.
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Light curve

‘ Qujobiissio confirm tha

If the survey isQiesigned for tranSit Searéhes themithe problémis 0
simple. If not then'the likelihood surface is erratic.\""r




? 2ypical light curve with non optimal sampling may look like anything(l
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Multiple Optimized Parameter Estimation and Data Compression
MOPED
r

Method to compress data by Heavens et al. (2000)

Given data x (our case a light-curve) which includes a signal part u and a
noise n

X?7?27?n

The idea is to find weighting vector b, (m runs from 1 to number of
parameters)

Y., ?b X

that contains as much information as possible about the parameters
(period, duration of the transit etc.).

These numbers y, are then used as the data set in a likelihood analysis
with the consequent increase in speed at finding the best solution. In
MOPED, there is one vector associated with each parameter.



MOPED

_

Find the proper weights such as the transformation is lossless.

Lossless is defined as the Fisher matrix remains unchanged at the
maximum likelihood.

The Fisher matrix is defined by:

2
F, 7 _<’? InL>
??.7?,

The posterior probability for the parameters is the likelihood, which for Gaussian
noise is (alas needs to be Gaussian)

? ?
L(2,)? expR =2 (% 22,)CH(x 22,)
? 2 i) )

If we had the correct parameters then this can be shown to be perfectly lossless.
Of course we can not know the answer apriory. Nevertheless Heavenset a
(2000) show that when the weights are appropriate chosen the solution is still
accurate.
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The weights are (complicated as it is)

?1
c™?,

b, ? ’
J?'.C™2,
and

m?1

c™? .27 (?'.b)b,

? CI?l
bm ; m?1
t 21 t 2
2t C"? 22 (?'h,)

q?1

Where comma denotes derivatives.

Note:
C is the covariance matrix and depends on the data
? is the model and it depends on the parameters.
Need to choose a fiducial model for that

v
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Now what we do with that? Write the new likelihood

InL(2,)? 2?2 b.(a,) 2 b,(q,)7?(q)"

]

Where ¢; is the fiducial model and q is the model we are trying out.

We choose g and calculate the log likelihood in this new space.

WHY ?

If the covariant matrix is known (or stays significantly same) then the
second term needs to be computed only once for the whole dataset
(because it depends on fiducial model and trial models)

So for each light-curve | compute the dot-product and subtract.

But there is more (do not run away)

5 .
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We need to choose a model for our transits

Four free parameters:
1. Period, P
2. Depth, ?
?7? Duration, ?
?7? Epoch, ?

Note: A more realistic model can easily be made using tanh
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Multiple Fiducial models

’

For an arbitrary fiducial model the likelihood function will have several
maxima/minima.

One of those maxima is guaranteed to be the true one. If there was no
noise this would have been exact.

For an another fiducial model there again several maxima/minima. One of
those maxima is guaranteed to be the true one

Combine several fiducial models and eliminate all but the true solutions.

We define a new measure

Y72 19|

Nf {as}
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KBO-Temporal Symmetry/Assymetry

’

Hsiang-Kuang Chang, Sun-Kun King, Jau-Shian Liang, Ping-Shien Wu, Lupin Chun-Che Lin and Jeng-Lun
Chiu, Nature 442, 660-663(10 August 2006)
X RAY data from RXTE (high time resolution data) from SCO-X1 (the second brighter x-rays source)
A trans-Neptunian object passes in front of a star, thus occulting the light.
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L ooking for a statistical test for temporal asymmetry

My method (under development). Assume time symmetry at ?

fA?2s*?2n
f82s8?2n

n QA 2\
oy L A"

nN?15 2% 22%

If symmetric then Q follows a chi-square distribution.
Assume errors are Gaussian
They are definitely not !

What do | do ?

il
.




Binary Asteroids.

Looking for binary asteroids.

L ook for tracksin the HST archive

Bayesian approach !

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.




Figure 3 shows a pictorial representation of the model. The trails of the host and the companion
are shown as well as the center of light. We represent the trail of the host as a function of time
as pu(t), the host-companion separation as a vector £ (we assume that this is constant during the
integration time), the initial position on the CCD as w and a general position on the CCD as p.
The number of photons that fall within the boundaries of a pixel i

Ni= [ [ [Fue.p) + E(t,p)] dp (1)
Pt

where Fy.(t,p) and F.(t,p) are the number of photons per unit time per unit area falling on the
CCD at time t and at position p due to the host asteroid and its companion., The time integration
range is taken to be over the whole exposure time. This is equal to the convolution of a delta
function, representing the position of the host /companion at time ¢, and the PSF:

Fu(t,p) = ©n [6(p— u(t) - w) ® PSF] 2)
Fu(t,p) = ©. [6(p—u(t)—w—§)®PSF| (3)

where 6, 8, are the number of photons from host, companion asteroids. These are free parameters
to be determined by the fit later.
Substituting eqn 2, eqn 3 into egn 1 and changing the notation to reflect the free parameters we get
Ni(©, 0., w, &) = ff {[@nd(p — p(t)) +©.8(p — u(t) + £)] @ PSF} didp (4)
P

we define N.; and Nj; as

p(t) —w) @ PSF| didp

P""Ti::! (WE3 ) . j.!.ff:l W E] £ PSF {ﬂ'd]]




and thus rewrite eqn (3) as

Ni(@) = N;(©4,,8., w, ) = Oy Np;(w) + O:.Nei(w, ) , [

=]
S

where 8 = {B,,8,_,w,£}.

Assuming we know the trail of the host as a function of time p(t) then the free parameters are
w,£ and By .. We can further constraint w to be within few pixels from the value we establish
visually, || to be smaller than the width of the trail and fit the ratio of the @ - instead.

Consider a data set of k observations (in our case observation is the measured number of photons
in pixel i) D = {ng,...,n;} independently sampled from the same distribution f(n;|8). Where
@ represents all free parameters (in our case are the w, €, and ©3,0.). The likelthood function
Lini,no,...,N4,...,ne | @) is the probability that the data would have arisen, for a given value of
@, regarded as a function of 8, i.e., p(D|@). Lets assume that the observations are independent #
we have:

L(D|8) = prob ({n:} |8) = [ f(n: 8) ®)

where there are M pixels.
What is the probability function f(n;|8) 7 Assuming that the quantum efficiency of the CCD
15 close to 1 then the data points have arisen from a Poisson distribution

- Ni(@™ N8 |
Flm| Ni(8)) = T ° (9)
72!



Our inference about the amplitude of the signal and the background is embodied in the posterior
pdf prob(@|{n;}}. We use Bayes’ theorem to help us calculate it:

prob(@ | {n;}) oc prob({n;} | @) x prob(8) (10)

Having already dealt with the likelihood function abowe, all that remains is the assignment of
the prior pdf. Irrespective of the data, the one thing we do know is that neither the amplitudes of
the signal from the host or the companion can be negative. The most naive way of encoding this
is through a uniform priors. * Multiplying the Poisson likelihood resulting from eqns (9) and (8)
by a flat prior, according to Bayes’ theorem of eqn (10), yields the posterior pdf; its logarith L is
given by

A
L = In [prob({# |{n;})] = constant Zni In{N; (8)) — N3(8) (11)
i=1

where the constant includes all terms not involving 8. Our best estimate of the values of @ is
given by the values of & which maximize L; its reliability is indicated by the width, or the sharpness
of the posterior pdf about this optimal point. Howewer there is no need to look at the width
directly but rather the pdf itself. Since the w and the angle of £ are non-interesting variables one
can marginalize over those variables. Another improvement is to look for the ratio of the intensities.
The pdf of /6, and || are the two interesting quantities.

The Bayesian analysis presented here is practically the same as the maximum likelihood estima-
tor. This is generally true, when a flat prior is used then Bayesian approach and frequentist approach
become equivalent. The reason we choose the Bayesian route is due to the bootstrap method which
is extremely advantageous for our problem. Remember some of our objects (candidates) appear in
fow fields. As a matter of fact the brightest thickest candidates are in more than 3 fields. The basic
idea of bootstrap is simple. The posterior probability from one image can be used as a prior for the
next. One can show that this is equivalent to analyzing all the data together.




