Statistical Anaysis of Fe Lines

David C. Stenning

Statistical Model

- Suppose we observe the intensity of lines of wavelength $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}$.
- Let \hat{l}_{j} be the observed intensity in λ_{j}, and $\hat{\sigma}_{j}$ its error.
- We then model the data as

$$
\hat{\imath}_{j} \sim \operatorname{Normal}\left(A_{j}\left(n_{e}, T_{e}\right) n_{e}^{2} \mathrm{~d} s, \hat{\sigma}_{j}\right),
$$

where A_{j} is the atomic data curve for line λ_{j}, n_{e} is the electron density, T_{e} is the electron temperature, and $\mathrm{d} s$ is the path length through the solar atmosphere.

- We assume that all of the Fe XIII emission is formed at the same temperature and use a fixed T_{e}.

Model Fitting 1: Pragmatic Bayes

- Let $Y=\left\{\hat{l}_{1}, \ldots, \hat{I}_{J}\right\}$ and $\Theta=\left\{n_{e}, \mathrm{~d} s\right\}$.
- Denote the prior distribution on the atomic data curve by $P(A)$, the joint prior distribution on n_{e} and ds by $P(\Theta)$, and the likelihood function by $P(Y \mid \theta, A)$.
- We use flat prior distributions on $\log _{10}\left(n_{e}\right)$ and $\log _{10}(\mathrm{ds})$.
- Pragmatic Bayes: Assume that $P(A \mid Y)=P(A)$ such that

$$
P(\Theta, A \mid Y)=P(\Theta \mid A, Y) P(A)
$$

- For $I=1, \ldots, L$:

Step 1: Sample $A_{\text {l }}$ from its prior distribution: $A_{\text {I }} \sim P(A)$.
Step 2: For $k=1, \ldots, K$: sample $\Theta^{(k)}$ from its joint posterior distribution given A_{l} :

$$
\Theta^{(k)} \sim P\left(\Theta \mid Y, A_{l}\right) .
$$

MCMC Methodology

- Use a Metropolis algorithm to explore $P\left(\Theta \mid Y, A_{l}\right)$.
- At iteration $I+1$, draw $\Theta^{(*)} \sim \operatorname{Normal}\left(\Theta^{(I)},\left[(2.38)^{2} / 2\right] \Psi\right) .{ }^{1}$
- Ψ is an estimate of the posterior variance-covariance matrix computed via the Laplace approximation.

MCMC for exploring $\mathrm{P}\left(\Theta \mid \mathrm{Y}, \mathrm{A}^{(1)}\right)$

${ }^{1}$ See Gelman et al. (1996) for details on choice of proposal dist'n.

Model Fitting 2: Full Bayes

- Full Bayes: $P(\Theta, A \mid Y)=P(\Theta \mid A, Y) P(A \mid Y)$.
- The fully Bayesian posterior distribution on Θ can be thought of as a weighted version of that under Pragmatic Bayes:

$$
P(\Theta \mid Y)=\int P(\Theta \mid A, Y) \frac{P(A \mid Y)}{P(A)} P(A) \mathrm{d} A
$$

- Alternative computational techniques are used to obtain samples from $P(\Theta \mid Y)$.
- Let $\Phi(\Theta)$ be an approximation to $P(\Theta \mid A, Y)$
- Notice $\frac{P(A \mid Y)}{P(A)} P(Y)=\int \frac{P(Y \mid \Theta, A) P(\Theta)}{\Phi(\Theta)} \Phi(\Theta) \mathrm{d} \Theta$
- With $w(A)=\frac{P(A \mid Y)}{P(A)}$,

$$
w(A) P(Y) \approx \frac{1}{L} \sum_{l=1}^{L} \frac{P\left(Y \mid \Theta^{(k)}, A\right) P\left(\Theta^{(k)}\right)}{\Phi\left(\Theta^{(k)}\right)},
$$

where $\Theta^{(k)} \sim \Phi(\Theta)$.Now,

$$
P(\Theta \mid Y)=\int P(\Theta \mid A, Y) \frac{P(A \mid Y)}{P(A)} P(A) d A
$$

- Let $\tilde{w}(A)=\frac{w(A)}{\max w(A)}$, so $\max \tilde{w}(A)=1$.
- For each A_{l} we have a sample from $P\left(\Theta \mid A_{l}, Y\right)$, call them $\left\{\Theta_{l}^{(1)}, \ldots, \Theta_{l}^{(K)}\right\}$.
- For each of these samples, let $z_{l}^{(k)} \sim \operatorname{Bernoulli}\left(\tilde{w}\left(A_{l}\right)\right)$.
- Then, keep all the $\Theta_{l}^{(k)}$ such that $z_{l}^{(k)}=1$. This new sample is an approximate sample from $P(\Theta \mid Y)$.
- Note that the joint dist'n of A, Θ, Z is

$$
P(A) P(\Theta \mid Y, A)\left[h \frac{P(A \mid Y)}{P(A)}\right]^{z}\left[1-h \frac{P(A \mid Y)}{P(A)}\right]^{1-z}
$$

where h is a constant up to Y.

Pragmatic vs. Full Bayes

Pragmatic Bayesian Solution

Pragmatic vs. Full Bayes Solutions. Red lines and diamonds are represent the chi-squared fit.

Weighted Atomic Data Curves

Thanks!

