MHD modeling the heating of a twisted coronal loop

F. Reale – University of Palermo, Italy S. Orlando – INAF Osservatorio Astronomico di Palermo, Italy M. Guarrasi – CINECA/Italy A. Mignone – University of Turin, Italy G. Peres – University of Palermo, Italy A. Hood – University of St. Andrews, UK E. R. Priest – University of St. Andrews, UK

Outline

- Introduction: coronal loop issues
- Loop modeling
- 3D MHD loop modeling:
 - Uniform resistivity: monolithic loops
 - Switch-on resistivity: structured loops

Solar corona

12/05/15

Coronal loops

Coronal loops issues

- Out-of-equilibrium (e.g. overdensity)
- Multi-thermal structure
- Fine structure
- Flows
- Hot plasma (6-8 MK)
- Dynamic heating? Heating frequency?

Warren et al 2011

Dynamic heating? Very hot plasma (6-8 MK) in non-flaring active region cores

(pink, e.g. Reale+ 2011, Testa & Reale 2012, Petralia+ 2014)

Loop modeling

- Plasma confined in flux tubes moves and transports energy along the magnetic field lines
- Hydrodynamic modeling w/ empirical heating function
- Flares, loop ignition

Next step: Multi-strand loop modeling

Random combination of single loop outputs

ISSI workshop

Next step: Multi-strand loop modeling

 Random combination of single strand evolution to reconstruct spatial aspect

Toward self-consistent loop modeling

• 3D MHD numerical experiments

- nonlinear phase of an ideal kink instability, where magnetic reconnection leads to relaxation to a state of minimum magnetic energy (e.g. Hood+ 2009).
- self-consistent heating mechanism based on the braiding of magnetic field lines rooted in the convective photosphere (e.g. Bingert & Peter 2011).

Twisting

(e.g. Depontieu+, Science, 2014)

MHD modeling of twisted coronal loops

- Progressive twisting of coronal loop field lines
- Driven by rotation of footpoints (Rosner+ 1978 Golub+ 1980)

Rosner, Golub, Coppi, Vaiana 1978

Rationale

- Extension of hydrodynamic loop modeling to MHD loop modeling:
 - magnetic field to release energy, change of beta, nonuniform (expanding) field
 - Include chromosphere and TR
- Towards self-consistent modeling
- Keep it simple:
 - Magnetic twisting (not random braiding)
 - Simple resistivity
- Targets:
 - Typical loop structure
 - Dynamic heating
 - Fine structure

HPC PRACE project

(PRACE n°2011050755)

The way to heating the solar corona: finely-resolved twisting of magnetic loops

- PI: F. Reale
- **Co-I:** S. Orlando, M. Miceli, M. Guarrasi

Simulations: 3D MHD (resistivity; thermal cond.; radiative cooling; gravity)

Numerical code: PLUTO 4 (Mignone+ 2007)

Resources: ~ 31 Mhours on BlueGene/P FERMI/CINECA (storage ~ 10 TB)

Project schedule:

October 2012/April 2013+Fall 2013

ISSI workshop

12/05/15

Initial conditions

The 3D MHD model

Three-dimensional cylindrical coordinates: r, ϕ , z One quarter domain: $0 < \phi < \pi/2$, r₀ = 0.07 10⁹ cm The equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0 \ ,$$

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u} - \boldsymbol{B} \boldsymbol{B} + \boldsymbol{I} P_t) = \rho \boldsymbol{g} ,$$

$$rac{\partial
ho E}{\partial t} +
abla \cdot [oldsymbol{u}(
ho E + P_t) - oldsymbol{B}(oldsymbol{u} \cdot oldsymbol{B})] =$$

$$-\nabla \cdot \left[(\eta \cdot \boldsymbol{J}) \times \boldsymbol{B} \right] + \rho \boldsymbol{u} \cdot \boldsymbol{g} - \nabla \cdot \boldsymbol{F}_{c} - n_{e} n_{H} \Lambda(T)$$

$$rac{\partial \boldsymbol{B}}{\partial t} + \nabla \cdot (\boldsymbol{u}\boldsymbol{B} - \boldsymbol{B}\boldsymbol{u}) = -\nabla \times (\eta \cdot \boldsymbol{J}) \; ,$$

where

$$P_t = P + \frac{\boldsymbol{B} \cdot \boldsymbol{B}}{2} \ , \qquad \qquad E = \epsilon + \frac{\boldsymbol{u} \cdot \boldsymbol{u}}{2} + \frac{\boldsymbol{B} \cdot \boldsymbol{B}}{2\rho} \ ,$$

Initial atmosphere (Guarrasi+ 2014)

- Loop atmosphere:
 - Hydrostatic: gravity of a curved loop
 - Tenuous and cool:
 - 2L = 5 10⁹ cm
 - T₀ = 7 10⁵ K
 - $n_0 = 10^8 \text{ cm}^{-3}$
 - Background heating in the corona
- <u>Magnetic field:</u>
 - Loop expansion in the TR
 - B ~ 10 G in the corona (B~ 300 G in the chromosphere close to the central axis)
- Relaxed to equilibrium before twisting is switched on

The chromosphere

logT[K]

- Simplified:
 - Isothermal: T = 10⁴ K
 - Gravitationally stratified
 - No heating, no radiative losses
- No resistivity at all times

Two main simulations

- Uniform anomalous resistivity, smooth footpoint rotation
- Switch-on resistivity, perturbed footpoint rotation

Uniform anomalous resistivity

- <u>Anomalous resistivity</u> (Bingert & Peter 2011):
 - $\eta = 10^{13} \text{ cm}^2/\text{s}$
 - R_m =v L/η ~ 1 for v ~ 10 km/s, L ~
 100 km
 - Chromosphere: $\eta = 0$

The smooth twisting (red line)

- Footpoint rotation (z-boundaries):
 - Profile: constant angular speed ω
 - Maximum: 5 km/s (both footpoints)
 - Radius: r = 3000 km
 - Linear reduction:

ω **→**0: 3000 < r < 6000 km

- B-field dragged by footpoint rotation
 (β >> 1): twisting!
- The twisting begins at t=0

Grid resolution Each box 10x10 grid points

Uniform resistivity

- The domain is one quarter of the whole space: 0 < φ < π/2
- Non-uniform (fixed) grid: maximum resolution ~ 20 km (in TR)
- Box: [r, φ, z]= [384, 256, 768] pts
- Time: t = 0 2600 s
- Twisting: ~2 π
- CPU time: 5 million hours

Basic modeling: uniform resistivity

- Cross-section+field lines
- Temperature rises uniformly
- Density from the chromosphere
- Uniform monolithic structure

Uniform resistivity: Loop evolution along z

- Spaced every 200 s
- From blue (t=0) to red (t=1800 s)
- Gradual heating, gradual evolution
- Moderate evaporation speed

Uniform resistivity

- Loop heating
- Multi-thermal
- Slow flows
- No fine structure
- No hot plasma

Switch-on resistivity

- <u>"Switch-on" anomalous resistivity</u> (Hood+ 2009, eq.7):
 - $\eta = 0$ for J<J_{cr}
 - η = 10¹⁴ cm²/s for J > J_{cr}
 - Threshold:
 - J_{cr}= 75 A/cm²= 3.16 10⁻⁸ esu cm⁻² s⁻¹ (from test simulations)
 - Minimum heating:
 - H=ηJ_{cr}²≈10⁻² erg cm⁻³ s⁻¹
 - Chromosphere: η= 0

The perturbed twisting (black line)

- Footpoint rotation (z-boundaries):
 - Profile: constant angular speed ω
 - Maximum: 5 km/s (both footpoints)
 - Radius: r = 3000 km
 - Linear reduction:

ω **→**0: 3000 < r < 6000 km

RANDOMLY PERTURBED VELOCITY AT THE FOOTPOINTS

ISSI workshop

The main simulation

- Non-uniform (fixed) grid: maximum resolution ~ 20 km (in TR)
- Box: [r, φ, z]= [384, 256, 768] pts
- Time: t = 0 1870 s
- Twisting: ~1.5 π
- CPU time: 5 million hours, 32000 cores

Grid resolution Each box 10x10 grid points

t = 220 s

Current density (+ field lines)

- Only above threshold shown, i.e. heating marker
- The blue surface is the boundary where the density is 10⁹ cm⁻³
- Most current sheets:
 - Close to axis
 - <u>Close to footpoints</u>
 - <u>Lasting few frames: <1</u>
 <u>min</u>

t = 220 s

Temperature [MK] (+ field lines)

- Max T ~ 4 MK
- Fine structure

t = 220 s

Density (+ field lines)

- Units: 10⁹ cm⁻³
- Evaporation along field lines

Loop evolution along z

- Spaced every 200 s
- From blue (t=0) to red (t=1800 s)

Temperature vs time

Heating rate vs time

Total loop DEM

MHD loop modeling

Uniform resistivity

- Loop heating
- Multi-thermal
- Slow flows
- No fine structure
- No hot plasma

Switch-on resistivity

- Loop heating
- Multi-thermal
- Faster flows
- Fine structure
- Hot plasma
- Good as DEM/spectral diagnostics testing ground

Issues

- Twisting and resistivity -> typical loop evolution, including evaporation
- *Perturbed rotation* -> fine structure
- *Switch-on resistivity* -> hot component
- Status -> Paper I (uniform resistivity) to be submitted, Paper II in preparation
- For diagnostics -> density, temperature 3D map at t = 1800 s -> <u>you know the 3D truth, but not a</u> <u>trivial one</u>