DEM for the statistically challenged χ^2 vs. L1 norm minimization?

Frédéric Auchère

Institut d'Astrophysique Spatiale, France frederic.auchere@ias.u-psud.fr

Chloé Guennou Instituto de Astrofisica de Canarias, Spain

Merit function (a.k.a. objective function, criterion, etc.)

 $\left(\frac{I_b^{obs}-I_b^{th}(\xi)}{\sigma_{unc}}\right)^2$

- Many DEM inversion algorithms based on χ^2 minimization $\chi^2 = \min \left| \sum \chi^2 \right|$
- Example of χ^2 merit function for isothermal inversion (DEM $\xi = EM \, \delta(T_c)$)

- Goal is not to derive a minimization algorithm but to understand the properties of the merit function
- Results apply to all χ^2 -based inversion schemes
- Fundamental equivalence between noise and multithermality

Merit function (a.k.a. objective function, criterion, etc.)

- Many DEM inversion algorithms based on χ^2 minimization $\chi^2 = \min \left| \sum_{b=1}^{N_b} \left(\frac{I_b^{obs} I_b^{th}(\xi)}{\sigma_{unc}} \right)^2 \right|$
- Example of χ^2 merit function for isothermal inversion (DEM $\xi = EM \, \delta(T_c)$)

- Goal is not to derive a minimization algorithm but to understand the properties of the merit function
- Results apply to all χ^2 -based inversion schemes
- Fundamental equivalence between noise and multithermality

Merit function (a.k.a. objective function, criterion, etc.)

 $\left(\frac{I_b^{obs} - I_b^{th}(\xi)}{\sigma_{unc}}\right)^2$

- Many DEM inversion algorithms based on χ^2 minimization $\chi^2 = \min \left| \sum_{k=1}^{N_b} \right|$
- Example of χ^2 merit function for isothermal inversion (DEM $\xi = EM \, \delta(T_c)$)

- Goal is not to derive a minimization algorithm but to understand the properties of the merit function
- Results apply to all χ^2 -based inversion schemes
- Fundamental equivalence between noise and multithermality

Chloé's approach

o 6 AIA bands → can't fit a very complex DEM
 o Systematic search of all solutions for a simple test case
 o Gaussian (log-normal) DEM plasma input

$$\xi_{gau}^{P} = \frac{EM}{\sigma\sqrt{2\pi}} \exp\left(-\frac{\left[\log T_{e} - \log T_{c}\right]^{2}}{2\sigma^{2}}\right)$$
$$= EM \times \mathcal{N}(\log T_{e} - \log T_{c})$$

• Search for Gaussian solutions

$$\chi^{2} = \min\left[\sum_{b=1}^{N_{b}} \left(\frac{I_{b}^{obs} - I_{b}^{th}(\xi)}{\sigma_{unc}}\right)^{2}\right]$$

Detailed uncertainties

Photon noise

25% calibration & atomic physics

(some of the) results

Broad DEMs poorly constrained
Possible bias of the solutions towards
T_c = 1 MK & σ = 0.1 logT
Similar to Weber et al. 2005, ApJ, 635, L101 (Guennou, C. et al. 2012a, ApJS, 203, 25, Guennou, C. et al. 2012b, ApJS, 203, 26)

Alternative to χ^2

• Cheung, M., Boerner, P., Schrijver, C. et al. 2015, "Thermal Diagnostics with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions", ApJ, in press

 Dictionary-based inversion 13 17 $B^{a=0.6}$ $B^{a=0.1}$ $B^{a=0.2}$ 21 63 0 \circ Not χ^2 -based • Minimizes the L1 norm of the coefficients x_i , i.e. LP1 : minimize $\sum_{j=1}^{n} x_j$ subject to $\mathbf{D}\vec{x} \leq \vec{y} + \vec{\eta},$ $\mathbf{D}\vec{x} \geq \max(\vec{y} - \vec{\eta}, 0),$ $\vec{x} > 0.$

• If B = B^{dirac} only, $\sum_{j=1}^{n} x_j = EM$

\circ More robust than χ^2 for wide DEMs ?

Back to χ^2 : why are broad DEMs poorly constrained?

May 11, 2015 – ISSI – F. Auchère – broad DEMs, χ^2 vs. L1 norm

Back to χ^2 : why are broad DEMs poorly constrained?

Comparison χ^2 - L1

• Cheung et al. use **aia_bp_estimate_error** to estimate the uncertainties

photon noise, compression and quantization round-off, error in dark subtraction
 no atomic physics & calibration uncertainties

• Run of Chloe's code with the same (<<25%) uncertainties (constant $EM = 10^{38} \text{ m}^{-5}$)

• Similar results !

• Need to run Mark Cheung's code with 25% uncertainties

Comparison χ^2 - L1

• Cheung et al. use **aia_bp_estimate_error** to estimate the uncertainties

photon noise, compression and quantization round-off, error in dark subtraction
 no atomic physics & calibration uncertainties

To be continued...

Mark Cheung's method is all new to me

• I don't understand yet how the L1 approach can alleviate the difficulties found for broad DEMs

That does not mean it's not the case :D

Discussion started with Mark Cheung

Run both codes with the same input DEMs & uncertainties

Compare

○ ISSI 2016 ...

AIA signal vs Temperature & EM

Is my plasma isothermal?

