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Abstract: The objective of this document and the accompanying slides is to show examples of the 
application of Bayesian analysis tools to the inversion of physical parameters in coronal 
seismology. Coronal seismology refers to the methods developed to probe solar plasmas by 
comparison between theoretically predicted magnetic wave properties with those observed. In the 
last years, we have been developing several techniques to perform parameter inference, model 
comparison, and model averaging using waves and oscillations in magnetic and plasma structures 
of the solar corona. The idea is to show some of these results to explain some Bayesian concepts 
that might be applicable to our problems and see if they can help.

1. The title of my talk is “Applications of Bayesian analysis to coronal seismology”. The idea is to 
show examples of the application of Bayesian analysis to the inversion of physical parameters 
in coronal seismology, to see if this can be of help to our problems. 

2. There are some things that I know to be true, e.g., “my name is Iñigo Arregui” and others that I 
know to be false, “I am not Harry Warren”. There remain many things whose truth of falsity are 
unknown to me. I could say that I am uncertain about them. Many of those are related to the 
Sun and, in particular, to the solar atmosphere.

3. Truth and falsity are the subjects of logic, which has a long history going back to Aristotle in the 
Western world. The study of uncertainty is much more recent. We understand probability as 
extended logic, a tool to quantify uncertainty in terms of degree of belief.

4. My research area is called seismology of the solar atmosphere. The aim is the determination of 
difficult to measure physical parameters in the solar atmosphere, by a combination of observed 
and theoretical properties of magnetic waves that are present in structures such as coronal 
loops or prominences.

5. The existence of waves and oscillations in magnetic and plasma structures of the solar 
atmosphere is now beyond question. Early observations, already in the 70s, pointed to the 
existence of quasi-periodic perturbations in solar coronal structures. The detection of these 
oscillations was mainly based on the measurement of the temporal and spatial variation of 
spectroscopic properties (such as intensity, line width, and Doppler velocity) of coronal 
emission lines. The recent high resolution imaging and spectroscopic observations have 
enabled us to measure these waves with increasing detail. Wave-like dynamics is now found in 
different regions of the solar atmosphere in structures with different physical properties.

6. The method of MHD seismology works as follows. We have observation of solar atmospheric 
magnetic structures from which a number of physical parameters, such as the temperature, 
density, or magnetic field strength, are unknown. We can use those observations to propose 
theoretical models. Very often, observations also show the existence of waves and oscillations 
in the observed structures. We can then study the theoretical properties of MHD waves in the 
modelled structures and compare them to the observed wave properties. By gradually 
improving theory by learning from observations one expects to improve models and at the 
same time determine the unknown physical parameters.
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7. The method is akin to those developed to study e.g., the interiors of the Earth or the Sun using 
waves; the physical conditions of magnetospheric plasmas, accretion disks around compact 
objects; or fusion plasmas in tokamak experiments.

8. This is a typical problem in which probabilistic inference has to be applied. The reason is that 
we need to solve an inverse problem. In the forward problem, we prescribe theoretical models 
and parameters (the causes) and analyse the theoretical wave properties (the consequences).  
In the  inverse problem, we try to infer the causes (the unknown physical parameters/models) 
from the consequences (the observed wave properties). This problem has to be solved under 
conditions in which information is incomplete and uncertain.  For these reasons, we use the 
rules of probability to make scientific inference and quantify uncertainty.

9. We are going to make statements in terms of probability and this is a slide to clarify what we 
mean by this word. Probability is a tool to quantify randomness and (as is our case) uncertainty. 
Statistics uses this tool to make scientific inference. There are two main schools/lines of 
thought/religions in the use of probability. They are both correct and useful, but they calculate 
probabilities of different things. Frequentists measure occurrence rates or frequencies. 
Probability for them is the long-run relative frequency in the limit of infinite repetitions of e.g., 
the same experiment. They focus on alternative data and compare the occurrence rate of 
different data realisations. This is useful for counting or characterising data. Bayesians 
measure informed belief. Probability for them is a measure of the degree to which a given 
proposition is supported by data. They focus on alternative hypotheses and compare 
probabilities of different hypotheses in view of data. This is useful and necessary for inference 
and model comparison. Astrophysics (solar physics) is an observational science. Data are 
fixed. Hence the Bayesian framework is the only way we have to perform parameter inference 
and model comparison, to see how data constrain parameters and models, and to propagate 
uncertainty from data to inferred parameters. The framework defines rigorous tools to do all 
this.

10. In my view, we cannot state that something is true or false in the solar atmosphere. We just try 
to quantify what to believe concerning physical parameters and models. And accept that as the 
best we can do. I suspect this is applicable to most of the astrophysical research. 

11. Bayesian analysis considers any inversion problem, in terms of probabilistic inference, as the 
task of estimating the degree of belief on statements about parameter values or model 
evidence, conditional on observed data. It uses Bayes' rule, which says that the state of 
knowledge is a combination of what we know independently of the data (the prior) and the 
likelihood of obtaining a given data realisation as a function of the parameter vector (the 
likelihood function). This gives the posterior distribution that accounts for what can be said 
about a parameter or model, conditional on data. Bayes' rule can be applied to the problems of 
parameter inference, model comparison, and model averaging. In parameter inference the 
posterior is computed for different combinations of parameters and then one marginalises to 
obtain information about the one in which we are interested. In model comparison, the ratio of 
posteriors for alternative models is computed to assess which one better explains observed 
data. Finally, model averaging enables us to combine the alternative posteriors by weighting 
them with the evidence for each model.

12. The following is a list of methodologies and applications we have developed in the last years 
for the application of Bayesian analysis to coronal seismology. Applications include the 
inference of physical parameters in oscillating magnetic structures in coronal and prominence 
plasmas using observed properties of damped transverse oscillations; the inference and model 
comparison of the coronal density scale height and magnetic field expansion, using multiple 
mode period oscillations; or the model comparison for the density structure along and across 
coronal waveguides, using the properties of transverse kink waves. The employed 
methodologies include: the MCMC sampling of posterior distributions; the computation of 
marginal posteriors from the integrals of the full posterior; the computation of the marginal 
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likelihood to assess model plausibility; the computation of Bayes factors to assess relative 
model plausibility; or the calculation of weighted posteriors to perform model averaging.

13. Our first example deals with the determination of physical parameters in oscillating coronal 
loops. 

14. Transverse oscillations of coronal loops are well-known since they were discovered by TRACE. 
After a large scale, impulsive, perturbation in the corona, such as a flare or filament eruption, 
individual or groups of coronal loops are seen to oscillate in their transverse direction.  These 
oscillations have periods of a few minutes. An important property is that oscillations are quickly 
damped in time, with damping time scales of a few oscillatory periods only. Transverse loop 
oscillations were interpreted as the fundamental standing fast MHD kink mode of a magnetic 
flux tube, the only oscillatory mode that produces the lateral displacement of an axisymmetric 
flux tube. Regarding the damping, several mechanisms have been proposed. The one that 
seems to better explain the observations is resonant damping. Because of the inhomogeneity 
of the medium in the transverse direction, the global kink mode is coupled to local Alfvén waves 
and energy is transferred to motions at the boundary of the tube.

15. In coronal loops, the forward problem is reduced to the solution of two algebraic equations for 
the period and damping ratio of resonantly damped kink oscillations in 1D magnetic flux tubes 
under the thin tube and thin boundary approximations. When no further assumptions are made, 
these wave properties are functions of three unknown parameters: density contrast, transverse 
inhomogeneity length-scale, and internal Alfvén travel time. The classic inversion technique 
simply consists of imposing these two functions to be equal to the observed periods and 
damping times. As we have two observables and three unknowns, there is an infinite number of 
equally valid equilibrium models that explain observations. However, these solutions must 
follow a particular 1D solution space in the 3D parameter space. 

16. This solution curve was first obtained by Arregui et al. (2007), numerically, and then by 
Goossens et al. (2008), analytically. The figure shows the valid equilibrium models that 
reproduce observed period and damping rates in the three-dimensional parameter space of 
density contrast, transverse inhomogeneity, and Alfvén travel time. Although there are in 
principle infinite possibilities, the Alfvén travel time is found to be constrained to a rather narrow 
range. We see an excellent agreement between the analytic inversion (solid lines) and the 
numerical inversion (dots) outside the thin tube and thin boundary approximations. This is a 
general solution, but has two main limitations. First, the fact that there is an infinite number of 
equally valid solutions.  Also, it is not clear how to propagate errors from observations to 
inferred parameters.

17. Four years ago, we followed a completely different approach using the Bayesian framework. 
We computed the posteriors using different prior information for the three unknowns and a 
Gaussian likelihood for data.

18. We found that the optimal result is obtained when some additional information on density 
contrast is introduced. In that case, data is able to fully constrain the three unknowns.

19. Marginal posteriors for the three parameters are obtained from which estimates can be 
obtained with correct propagation of uncertainties from data to inferred parameters. The figures 
show the marginal posteriors for the three unknowns and the joint probability distribution for l/R 
and Alfvén travel time with 68 and 95 % confidence intervals.

20. We applied the technique to 11 events of loop oscillations and compared the inversion results 
to previous analytical constraints. 

21. Our second example deals with the use of observed spatial damping of coronal waves for the 
determination of the cross-field density structure of magnetic waveguides.
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22. Propagating transverse waves in the corona also show spatial damping. This has been found 
by Tomczyk et al. (2007) and Tomczyk & McIntosh (2009). These movie shows Doppler 
velocities measured with the CoMP instrument. The motions show almost zero compressibility, 
no intensity oscillations, hence they were interpreted as Alfvén waves. There is a discrepancy 
between inward/outward power in these waves that points to the possibility of in  situ damping. 
Indeed, resonant damping predicts a frequency dependent attenuation of wave motions and 
observational/theoretical results seem to point to this mechanism being responsible for the 
observed damping.

23. The spatial damping of propagating kink waves has been extensively studied both analytically 
and numerically. As can be clearly seen in the simulations by Pascoe et al. for propagating kink 
waves resonant absorption produces the attenuation of wave amplitude in space. 

24. The decay was thought to have an exponential profile along the waveguide until, trying to fit the 
amplitude computed in numerical simulations, Pascoe et al. found that a Gaussian profile 
better fits the initial damping stage. Analytical studies for the spatial damping by Hood et al. 
and for time damping by Ruderman & Terradas have recently shown that the existence of two 
different damping regimes (Gaussian + exponential) is an inherent feature of resonant 
absorption. The exponential profile only accounts for the asymptotic behavior in space/time. 
Analytical expressions for the Gaussian, exponential damping length scales and the position at 
which the damping regime changes have been obtained as a function of the two parameters 
that define the cross-field density structuring of the waveguide. This means we have additional 
information without the need to include new parameters. 

25. In our analysis we have considered the inference of the cross-field density structuring from 
measurements of the Gaussian damping length and the height of change of damping regime. 
The forward model is analytical and given by these expressions for Lg and h. We have 
generated synthetic data for parameter values in the expected and reasonable parameter 
space. Then, a Gaussian likelihood and uniform prior distributions for the contrast and 
transverse inhomogeneity length scale are considered. The inference is performed by using 
Bayes' rule and marginalizing.

26. The top two figures show the marginal posteriors for contrast and inhomogeneity length scale. 
They show well peaked probability distributions. The bottom figure shows the joint posterior 
with 68 and 95 % credible intervals. The existence of two damping regimes enables us to fully 
constrain the cross-field density structuring. 

27. We have repeated the inversions for different values of parameters using the analytical forward 
model. Overall we recover the input parameters correctly. We have also performed numerical 
simulations of the propagation and damping processes. After fitting the signal along the 
waveguide, numerical values for the damping length scales are obtained and the inversion is 
repeated. We see that the analytical forward model is an accurate representation of the full 
numerical solutions. Also, large density contrast produce the largest errors, since in those 
cases  the Gaussian stage of the damping is shorter, sometimes comparable to the wavelength 
and the fitting is problematic. These cases represent a challenge from the observational point 
of view.

28. There is an easy alternative way of obtaining information about the cross-field density structure 
in coronal waveguides from the damping of transverse wave by making use of the definition of 
joint probability and marginal posteriors

29. Imagine your forward problem is simply that the number c is the product of a and b. We can 
construct the joint probability of a and b, given c, which is shown in this surface plot. Then, for a 
fixed value of a, p(b|a,c) is this dashed line here which gives us the probability of b, given a and 
c. If we wish the probability of b, given c, all we have to do is to integrate for all values of a. For 
a fixed value of b, p(a|b,c) is this solid line here which gives us the probability of a, given b and 
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c. If we wish the probability of b, given c, all we have to do is to integrate for all values of a. 
Using this simple method, we can solve our problem.

30. The damping ratio of transverse oscillations is a function of two parameters: the density 
contrast and the transverse inhomogeneity length-scale. We can infer both of them using 
Bayes theorem assuming uniform priors in given ranges and a Gaussian likelihood function. 
Then, one constructs a joint probability distribution as the one shown before for the product of 
two numbers and marginalises. 

31. The results show well-constrained posteriors for both unknowns, although a long tail is present 
for the density contrast which implies a larger uncertainty on this parameter.

32. Our	   fourth	   example	   applies	   Bayesian	   inference	   and	   model	   comparison	   techniques	   to	   de	  
inference	  of	   coronal	  density	   scale	  height	  and	  magne;c	  field	  expansion	   from	  observa;ons	  of	  
mul;ple	  period	  transverse	  oscilla;ons.	  	  

33. Some	  10	  years	  ago,	  the	  existence	  of	  mul;ple	  mode	  coronal	   loop	  oscilla;ons	  was	  discovered.	  
Verwichte	  et	  al.	  detected	  the	  presence	  of	  both	  the	  fundamental	   	  and	  the	  first	  harmonic	  kink	  
mode	  in	  a	  number	  of	   loops	  belonging	  to	  a	  coronal	  arcade.	  This	  detec;on	  opened	  the	  way	  to	  
perform	   a	   seismological	   analysis	   to	   determine	   the	   density	   scale-‐height	   in	   the	   corona,	   using	  
MHD	  oscilla;ons.	  In	  a	  uniform	  cavity,	  the	  spectrum	  of	  oscilla;ons	  is	  uniformly	  distributed	  and	  
the	   ra;o	   of	   periods	   P1/2P2	   should	   be	   equal	   to	   one.	   However,	   because	   of	   the	   presence	   of	  
density	  stra;fica;on	  in	  the	  corona,	  this	  ra;o	  is	  smaller	  than	  one	  and	  directly	  depends	  on	  the	  
density	  scale	  height	  in	  the	  corona.	  	  

34. By	   considering	   an	   exponen;ally	   stra;fied	   atmosphere	   projected	   onto	   a	   semicircular	   coronal	  
loop,	   one	   can	  mimic	   the	   stra;fied	  atmosphere	  by	  projec;ng	   the	  density	   varia;on	  along	   the	  
loop	  onto	  a	  straight	  tube	  model	  of	  length	  L	  and	  height	  at	  the	  apex	  L/pi.	  Then,	  one	  can	  use	  the	  
measured	  period	  ra;o	  to	  es;mate	  the	  coronal	  density	  scale	  height.	  	  

35. This	   is	   an	   example	   of	   the	   inversion	   performed	   in	   2005.	   The	   dots	   represented	   the	   inversion	  
curve	  from	  which	  the	  density	  scale	  height	  can	  be	  obtained	  for	  a	  given	  value	  of	  the	  period	  ra;o.	  

36. An	   alterna;ve	   interpreta;on	   for	   the	   departure	   from	   unity	   for	   the	   period	   ra;o	   is	   due	   to	  
magne;c	   field	   expansion	   of	   the	  waveguide,	   as	   proposed	   by	   Verth	   and	   Erdelyi.	   In	   this	   case,	  
expansion	  produces	  an	  increase	  of	  the	  period	  ra;o	  P1/2P2.	  	  

37. In	  our	  work,	  we	  have	  considered	  both	  models	  and	  performed	  first	  parameter	  inference	  in	  the	  
Bayesian	  framework	  to	  determine	  the	  coronal	  density	  scale	  height	  and	  the	  magne;c	  expansion	  
factor.	   We	   have	   models	   1	   and	   for	   density	   stra;fica;on	   and	   magne;c	   expansion	   with	   an	  
analy;cal	   forward	   problems	   that	   relate	   the	   period	   ra;o	   to	   H	   and	   gamma.	   For	   parameter	  
inference	  we	  compute	  the	  posteriors	  using	  Gaussian	  likelihoods	  and	  uniform	  priors	  and	  then,	  
as	  usual,	  marginalize.	  	  

38. These	  are	  the	  results.	  We	  see	  that	  in	  both	  cases	  well-‐defined	  posteriors	  are	  obtained.	  For	  the	  
coronal	  density	  scale	  height	  we	  obtain	  es;mates	  of	  21	  and	  56	  Mm	  for	  two	  considered	  cases.	  
For	  magne;c	  tube	  expansion	  factors	  values	  of	  1.20	  and	  1.87	  are	  obtained.	  	  

39. Then,	  one	  has	  to	  assess	  the	  relevance	  of	  such	  inferences	  by	  performing	  model	  comparison.	  It	  is	  
true	  that	   from	  the	  mathema;cal	  point	  of	  view,	   if	   the	  period	  ra;o	   is	  >	  1	  density	  stra;fica;on	  
looks	  like	  the	  plausible	  mechanism.	  On	  the	  contrary,	  if	  the	  period	  ra;o	  is	  >1,	  one	  should	  think	  
that	  magne;c	  tube	  expansion	  is	  causing	  this.	  However,	  data	  are	  noisy,	  and	  the	  two	  hypotheses	  
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have	   to	   be	   tested.	  We	   have	   assessed	   the	   performance	   of	   three	   different	  models:	  M0	   for	   a	  
uniform	  tube;	  M1	  for	  density	  stra;fica;on;	  and	  M2	  for	  magne;c	  expansion.	  The	  figure	  on	  the	  
right	  shows	  the	  marginal	  likelihoods	  for	  the	  three	  models.	  It	  is	  clear	  that	  M0	  is	  likely	  for	  r	  ~	  1;	  
M1	  for	  r<	  1	  and	  M2	  for	  r>1.	   In	  order	  to	  make	  a	  quan;ta;ve	  comparison,	  we	  have	  computed	  
Vayes	  factors	  as	  a	  func;on	  of	  data.	  This	  is	  done	  by	  considering	  posteriors	  ra;os	  between	  the	  
different	  models	  and	  assuming	  they	  are	  all	  equally	  likely	  a	  priory.	  Jeffreys	  scales	  enables	  us	  to	  
give	  a	  relevance	  to	  the	  evidence	  of	  one	  model	  against	  the	  other,	  in	  terms	  of	  evidence	  that	  is:	  
no	   worth	   more	   than	   a	   bare	   men;on,	   posi;ve	   evidence,	   strong	   evidence,	   or	   very	   strong	  
evidence.	  	  

40. Consider	  first	  M1	  vs.	  M0.	  It	  is	  clear	  from	  the	  figure	  that	  a	  period	  ra;o	  smaller	  than	  one	  is	  not	  
sufficient	  evidence	  for	  density	  stra;fica;on.	  Depending	  on	  the	  period	  ra;o	  and	  its	  uncertainty	  
we	  have	  different	  levels	  of	  evidence	  for	  our	  model.	  	  

41. Something	  similar	  happens	  when	  comparing	  model	  M2	  against	  M0.	  In	  this	  case,	  we	  need	  to	  go	  
as	  far	  a	  r=	  1.16	  to	  have	  posi;ve	  evidence	  for	  magne;c	  expansion	  producing	  the	  devia;on	  of	  
period	  ra;o	  from	  unity.	  	  

42. Finally,	  we	  have	  compared	  M1	  and	  M2.	  The	  figure	  shows	  the	  different	   levels	  of	  evidence	  for	  
one	  model	  against	  the	  other	  as	  a	  func;on	  of	  the	  measured	  period	  ra;o.	  

43. Our last example is to show the application of the three levels of Bayesian inference 
(parameter inference - model comparison - model averaging) to the determination of the cross-
field density structure.

44. Analytical expressions for the period and damping of transverse waves can be obtained under 
the so-called thin tube and thin boundary approximations. The relevant unknown parameters 
are the internal Alfvén travel time, the density contrast, and the transverse inhomogeneity 
length-scale. In the expression for the damping time over the period, F is a numerical factor 
that depends on the radial density profile that has been assumed. 

45. We have considered three alternative density models in which the variation of mass density at 
the non-uniform layer is either sinusoidal, linear, or parabolic. The figures show the cross-field 
density profile for these models for and fixed value of the density contrast and varying values of 
the transverse inhomogeneity length-scale. You might think that the exact profile at the layer 
should have little influence on periods and damping times, but that seems not to be the case, 
according to a recent study by Soler et al. (2014).

46. These two figures show the result of performing the classic inversion of the three unknown 
parameters using observed values for period and damping time. This kind of inversion was first 
performed by Arregui et al. (2007) and leads to a one-dimensional solution curve in the three-
dimensional parameter space that connects all the possible values for the unknown parameters 
that are compatible with the observed data. Soler et al. (2014) have repeated this inversion 
using the three alternative density models described before. We can see that the classic 
inversion leads to different solution curves. These curves show the solution to a mathematical 
problem, that of finding the 1D solution curve. We will see what happens when we find the 
solution to the inference problem. To this end, we use Bayesian analysis.

47. In parameter inference, we want to infer the unknown physical parameters conditional on the 
observed oscillation properties. By particularising  Bayes theorem to our problem, we have that 
the full posterior is proportional to the likelihood times the prior. Then, by marginalising the full 
posterior we obtain the marginal posteriors for each of the three parameters of interest.
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48. For parameter inference, we use again the definition of conditional probability and marginal 
posteriors. Imagine your forward problem is simply that the number c is the product of a and b. 
We can construct the joint probability of a and b, given c, which is shown in this surface plot. 
Then, for a fixed value of a, p(b|a,c) is this dashed line here which gives us the probability of b, 
given a and c. If we wish the probability of b, given c, all we have to do is to integrate for all 
values of a. For a fixed value of b, p(a|b,c) is this solid line here which gives us the probability 
of a, given b and c. If we wish the probability of b, given c, all we have to do is to integrate for 
all values of a. Using this simple method, we can solve our problem.

49. The following curves show the marginal posterior density functions for the three parameters of 
interest, Alfven travel time-density contrast-transverse inhomogeneity length scale, with the 
inference performed for each of the three considered density models and by comparing the 
inversion performed by using analytic and numerical solutions for the forward problem. We see 
that similar posteriors are obtained regardless of the assumed density profile and that the most 
important differences arise because of the TTTB approximations.

50. This plots show the same results but now overplotting the posteriors for the three models in 
each of the left- and right-hand side panels that correspond to TTTB and numerical results. The 
Alfven transit time inference is the same regardless of the density model used. Something 
similar happens with the inference for the density contrast, at least under the TTTB 
approximations. The most significant differences are obtained in the inference of the transverse 
inhomogeneity length-scale. 

51. However, when we summarise the obtained posteriors by means of the median and the errors 
at the 68% credible region, we find that the differences are negligible and the adopted density 
model does not influence that much the inference results.

52. Moving to the next level of inference, model comparison enables us to compare the plausibility 
of the alternative models to explain observed data. This is done by computing posterior ratios 
on a one-to-one comparison between two models. Assuming that all three models are equally 
probable a priori, the comparison reduces to the computation of the Bayes factors. Then, a 
quantitative assessment can be obtained by using Jeffrey’s scale that assigns different levels of 
evidence depending on the Bayes factor.

53. The results from such a comparison are shown in these plots. First, I show an example surface 
plot of the evidence for the sinusoidal model given the data in the plane with possible values for 
observed period and damping time. The evidence changes depending on the observed period 
and damping time. The next three plots show the two-dimensional distribution of Bayes factors 
for the comparisons between linear vs. sinusoidal, parabolic vs. sinusoidal, and linear vs. 
parabolic models. The different grey-shaded regions indicate the level of evidence for one 
model against the alternative. Only for quite strong damping regimes (low values of Td in 
comparison with P) do we obtain substantial evidence for one model against the alternative. In 
those regions, the linear model would be the one supported by data.

54. Finally, the third level of Bayesian inference is model averaging. We have seen that the 
evidence for one model to be preferred over another is not strong enough for many 
combinations of observed period and damping times. However, the evidence for each of the 
models is different. Model averaging consist on combining the obtained posteriors to obtain a 
model-averaged posterior, weighted with the evidence for each model. By taking e.g., M1 as 
the reference model we can compute the Bayes factors with respect to it and use them in this 
expression to compute the model averaged posterior for each parameter.

55. Here is a result, for a case with weak damping. The different line styles show the posteriors for 
the different density models and the symbols the model averaged posteriors.

56. This is another example, for a case with strong damping.
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57. In conclusion, we have applied the three levels of Bayesian inference to the problem of 
obtaining information on the density structuring in coronal waveguides from damped transverse 
oscillations. Three different models have been considered, sinusoidal, linear, and parabolic, at 
the non-uniform transitional layer. In spite of the apparent differences from the classic 
inversion, Bayesian inference led to very similar results. The application of model comparison 
techniques could enable us to differentiate between the most plausible model in view of 
observed period and damping time, but only for strongly damped oscillation. Nevertheless, the 
three models have different levels of evidence and, even if this evidence is not overwhelming, 
Bayesian model averaging can be applied to obtain a combined posterior for the unknown 
parameters that includes the individual model evidence.   
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