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OVERVIEW

▪The Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) 
▪Motivation: Why are photometric redshifts significant for survey 

science 
▪The photometric redshift problem 
▪ Inverse problems 
▪The HSC PZ analysis strategy 
▪HSC Year 3 results 
▪Conclusions
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THE HSC SSP

▪ HSC Y3 shape catalog: 417 sq. deg. Area 
▪ HSC SSP: wide-field imaging survey with 1.77 sq. deg. field of view  
▪ 8.2 m Subaru telescope  
▪ 4 tomographic bins: raw (effective) galaxy number densities are 3.92 (3.77), 5.63 

(5.07), 4.68 (4.00) and 2.60 (2.12) arcmin−2

Decrease in Statistical Uncertainty
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HSC proposal https://hsc.mtk.nao.ac.jp/ssp/survey/



MOTIVATION

▪ S16A results indicate that photometric redshift uncertainty dominates the error budget 
▪ Compare WL analysis of the S16A tomographic photometric redshift analysis using 

(S16A/novel S19A methodology) assuming an S19A covariance  
▪ 0.5 sigma shift in the S8 towards higher values 
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FORECAST: IMPACT OF UPDATED PZ METHODOLOGY

Year 1 Results  
(Hamana et. al. 2020)

Forecast Year 3 Results  
(Rau et al. 2022)



THE PHOTOMETRIC REDSHIFT PROBLEM
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Map a high dimensional parameter space 
that describes galaxy populations to a 
low dimensional data vector 

Challenges: 
▪ Mapping can be ill-conditioned 
▪ Multiple solutions reproduce similar 

photometry (outlier populations) 
▪ Incomplete spectroscopic calibration  

for faint samples

Deconvolution
Recover using: 

Spatial Distribution
Photometry

Error model  
of galaxies

Buchs et al. 2019

Sample Redshift 
Distribution
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p(znoisy) = ∫ pError(znoisy − z)p(z)dz

Forward Model:

pnoisy = Kerror ⋅ ptrue

ptrue =
α1

λ1
ϕ1 + … +

αn

λn
ϕn

αj = ϕ*j pnoisy

Poor conditioning of Cosmological Imaging Surveys: NK,cond = 1010−17

INVERSE PROBLEMS



HSC PZ ANALYSIS STRATEGY
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1. Optimize sample selection to avoid identifiability issues 

2. Perform Sample Redshift Inference using multiple individual galaxy 
redshift methods. 

3. Include spatial cross-correlations as an additional calibration method 

4. Construct a conservative error budget for tomographic bins



SAMPLE SELECTION
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REMOVE GALAXIES WITH MULTIPLE SOLUTIONS 

Criterium: 



INDIVIDUAL GALAXY REDSHIFT ESTIMATION

Population Distributions 
(Galaxy Type, Redshift, 

Stellar Mass, etc. )
Observed 

Photometry
Selection 
Functions

Deconvolution/Inverse Problem

Population Distributions 
(Galaxy Type, Redshift, 

Stellar Mass, etc. )

Observed 
Photometry

Selection 
Functions

Regression Analysis using Training Set



GALAXY REDSHIFT ESTIMATION

Population Distributions 
(Galaxy Type, Redshift, 

Stellar Mass, etc. )
Observed 

Photometry
Selection Functions

FORWARD MODELING BASED APPROACHES (MIZUKI TEMPLATE FITTING)

Likelihood of measured 
photometry given 
parameters that describe 
population distributions 

Likelihood: Parametrization of 
measurement & relevant 
selection functions 
conditional on individual 
galaxy parameters 

Prior of individual Galaxy 
parameters conditional on 
population parameters

Photometry 
all Galaxies

Sample redshift  
histogram Heights

Lensing  
Weights 

Quantities  
of Interest

Individual Galaxy  
Flux/Redshifts

Deconvolution/Inverse Problem
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GALAXY REDSHIFT ESTIMATION
CONDITIONAL DENSITY ESTIMATION APPROACHES (DEMPZ, DNNZ)

Population Distributions 
(Galaxy Type, Redshift, 

Stellar Mass, etc. )
Observed 

Photometry
Selection Functions

Regression Analysis

Density Estimate: Sample 
Redshift Distribution  

(Kernel, KNN, …)   

Conditional Density 
Estimate trained on a 

calibration dataset 

Density Estimate of the 
observed photometry



CROSS-CORRELATION METHOD

▪ The spatial Cross-Correlation signal between binned spectroscopic and 
photometric samples is proportional to the photometric redshift distribution.
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w2pt ∝ pfid pspec bfid bspecwDM
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Spatial Cross-Correlations with the CAMIRA Luminous Red Galaxy 
Sample  
▪ Spatial Cross-Correlations are systematically affected by PZ systematics. 

▪ Photometric redshift error in the CAMIRA LRG sample    

▪ Marginalize over this redshift error in the analysis

σz,LRG ≈ 0.03

UTILIZE LUMINOUS RED GALAXY SAMPLES



RESULTS
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▪ Joint Inference between Photometry and Spatial Distribution of Galaxies  
(Rau, et al. 2020, 2021, 2022) 

▪ Bayesian Hierarchical Model for the HSC Year 3 photometric Redshift 
Inference

POSTERIOR TOMOGRAPHIC REDSHIFT DISTRIBUTION INFERENCE

https://arxiv.org/abs/1904.09988
https://arxiv.org/abs/2101.01184
https://arxiv.org/abs/2211.16516


RESULTS
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POSTERIOR TOMOGRAPHIC REDSHIFT MEANS



SUMMARY AND CONCLUSIONS

▪We present a tomographic sample redshift distribution analysis of the HSC Y3 
shape catalog. 

▪ Hierarchical inference of a joint data vector informed by cross-correlations and 
photometry. 

▪We achieve good consistency between the cross-correlation and photometry-
based inference. 

▪We present a conservative assessment of these errors and provide 
recommendations on prior choices 

▪ Include multiple sources of systematic in the inference for example: 
▪ Cosmic Variance 
▪ Discrepancies between multiple models 
▪ Marginalization over the CAMIRA-LRG error
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THE HSC SURVEY

▪ HSC Y3 shape catalog: 417 sq. deg. area 
▪ HSC SSP: wide-field imaging survey with 1.77 

sq. deg. field of view  
▪ 8.2 m Subaru telescope  
▪ 4 tomographic bins: raw (effective) galaxy 

number densities are 3.92 (3.77), 5.63 (5.07), 
4.68 (4.00) and 2.60 (2.12) arcmin−2

HSC proposal

HSC proposal



LSST PHOTOMETRIC REDSHIFT 
REQUIREMENTS
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Detailed requirement WL1 (Y10): Systematic uncertainty in the 
mean redshift of each source tomographic bin shall not exceed 
0.001(1 + z) in the Y10 DESC WL analysis. Goal WL1 (Y1): 
Systematic uncertainty in the mean redshift of each source 
tomographic bin should not exceed 0.002(1 + z) in the Y1 DESC 
WL analysis.

Status of Stage III surveys:

KiDS-1000 and DES-Y3 currently claim to measure the mean redshifts  
to a precision of ~0.01. It is necessary to improve the constraints by one 
order of magnitude, considering we have a deeper survey. 

https://arxiv.org/pdf/1809.01669.pdf


INDIVIDUAL GALAXY REDSHIFT ESTIMATION

Population Distributions 
(Galaxy Type, Redshift, 
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Observed 

Photometry
Selection Functions

FORWARD MODELING BASED APPROACHES (MIZUKI TEMPLATE FITTING)
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INDIVIDUAL GALAXY REDSHIFT ESTIMATION
CONDITIONAL DENSITY ESTIMATION APPROACHES (DEMPZ, DNNZ)
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Photometry
Selection Functions

Regression Analysis
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Conditional Density 
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Density Estimate of the 
observed photometry



LIMITATIONS AND FUTURE WORK 

▪Treatment of selection functions of the specXphot calibration sample 
▪ Improvements in the quantification of model error in ML (DEMPz, 

DNNz), selection functions in Template Fitting (Mizuki) 
▪Limitations in the treatment of cosmic variance induced by redshift 

calibration using the specXphot calibration sample: Conditioning on 
color and other quantities of interest 
▪Quantification of photometric redshift uncertainties and systematics of 

CAMIRA LRG galaxies 
▪Astrophysical effects in modeling the cross-correlation data vector: 

more complex galaxy-dm bias model, magnification bias, etc. 
▪ Improve high redshift coverage with DESI in future analysis
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