Investigating Nonlinear and Stochastic Variability of Accreting Compact Objects via Recurrence Analysis

Rebecca A. Phillipson
University of Washington

Collaborators: Padi Boyd, Alan Smale, Brian Powell (NASA Goddard); Michael Vogeley, Gordon Richards (Drexel); Eric Bellm (UW); ZTF Collaboration

NASA Grant: NNX16AT15H (Drexel)
NSF Grant: AST-1812779 (UW)
Advisor/PI: Dr. Eric Bellm (UW)

April 20, 2021 ● CHASC Seminar
Outline

● Motivation:
 ○ Long-term monitoring of X-ray Binaries and Active Galaxies
 ○ Traditional time series analysis

● Methods:
 ○ Phase Space and Topology
 ■ Example: 4U 1705-44
 ○ Recurrence Plots
 ○ Quantitative recurrence analysis

● Applications:
 ○ Distinguishing between stochastic and deterministic behavior
 ○ Identifying chaos
 ○ Outstanding challenges
X-ray Binary (XRB)

Active Galactic Nuclei (AGN)
Long-term variability provides a window into the dynamics of accretion.
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Examples:

Spectral Analysis

Auto-correlation
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Examples:

Uttley+ 2002
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Examples:

Spectral Analysis

Auto-correlation

Statistical methods

Parametric

Non-parametric

Examples:

Moving Averages

Kernel Regression

Examples:
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Statistical methods

Parametric

Non-parametric

Examples:

Spectral Analysis

Auto-correlation

Moreno+ 2019
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Examples:

Spectral Analysis

Auto-correlation

Statistical methods

Parametric

Non-parametric

Examples:

Moving Averages

Kernel Regression

Goal:

- Connect power spectrum and statistical features to intrinsic physical properties (black hole mass, spin, etc)

Challenges:

- Assumptions of stationarity, linearity; inconsistencies across bandwidth; influence of noise
Time Series Analysis

Guilds

Domain based Methods
- Frequency-Domain Methods
 - Spectral Analysis
- Time-Domain Methods
 - Auto-correlation

Statistical methods
- Parametric
- Non-parametric
 - Moving Averages
 - Kernel Regression

Phase-Space based methods
- Descriptive Diagrams
- Attractor Invariants
 - Poincaré Plots (return maps)
 - Recurrence Plots

Examples:
- Moving Averages
- Kernel Regression
- Poincaré Plots
- Recurrence Plots
Time Series Analysis

Guilds

Domain based Methods

Frequency-Domain Methods

Time-Domain Methods

Examples: Spectral Analysis, Auto-correlation

Statistical methods

Parametric

Non-parametric

Examples: Moving Averages, Kernel Regression

Phase-Space based methods

Descriptive Diagrams

Attractor Invariants

Examples: Phase-Space based methods

Descriptive Diagrams, Attractor Invariants

1. **Examples:**
 - Moving Averages
 - Kernel Regression

2. **Examples:**
 - Spectral Analysis
 - Auto-correlation
Time Series Analysis

Guilds

Domain based Methods

- Frequency-Domain Methods
 - Spectral Analysis
- Time-Domain Methods
 - Auto-correlation

Examples:

Statistical methods

- Parametric
 - Moving Averages
- Non-parametric
 - Kernel Regression

Examples:

Phase-Space based methods

- Descriptive Diagrams
- Attractor Invariants
 - Poincaré Plots (return maps)
 - Recurrence Plots

Advantages:
Analysis for nonlinear & linear systems; more direct probe of dynamics; can be applied to nonstationary, stochastic & deterministic time series
Phase Space

Classically: position versus velocity (or coordinate vs. first derivative)

Simple harmonic oscillator

Damped harmonic oscillator
Phase Space

Damped & Driven Oscillator (Duffing equation):

\[\ddot{x} + \delta \dot{x} + \alpha x + \beta x^3 = \gamma \cos(\omega t) \]
Phase Space encodes dynamical information
Phase Space encodes dynamical information

Relative Rotation Rates: How two trajectories (A and B) in phase space ‘wind’ around each other:

\[
R_{ij}(A, B) = \frac{1}{2\pi p_A p_B} \int \frac{n \cdot (\Delta r \times d\Delta r)}{\Delta r \cdot \Delta r}
\]

where \(\Delta r = [x_B(t) - x_A(t), y_B(t) - y_A(t)]\)

The set of RRRs (a set of integers) are unique to each class of differential equations.

(Solari & Gilmore 1988)

If the set of RRRs are the same for two systems -- they likely are produced by the same underlying attractor.

(Birman-Williams Theorem)
Phase Space encodes dynamical information

Relative Rotation Rates: How two trajectories (A and B) in phase space ‘wind’ around each other:

\[
R_{ij}(A, B) = \frac{1}{2\pi p_ap_B} \int \frac{n \cdot (\Delta r \times d\Delta r)}{\Delta r \cdot \Delta r} \Delta t
\]

where \(\Delta r = [x_B(t) - x_A(t), y_B(t) - y_A(t)]\)

The set of RRRs (a set of integers) are unique to each class of differential equations. *(Solari & Gilmore 1988)*

If the set of RRRs are the same for two systems -- they likely are produced by the same underlying attractor. *(Birman-Williams Theorem)*
Phase Space encodes dynamical information

4U 1705-44: a low-mass neutron star X-ray binary; **preface**: has evidence for nonlinearity

Left: light curve from RXTE All-sky monitor (2-12 keV)
Right: 2D phase from the numerical derivative of the flux

Phillipson+2018
Phase Space encodes dynamical information

Phillipson+2018
Phase Space encodes dynamical information

4U1705-44, Close Returns for p2.1 and p2.2

<table>
<thead>
<tr>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>2.1</th>
<th>2.2</th>
<th>3.1</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_y</td>
<td>x_y</td>
<td>x_y</td>
<td>$x_{y\alpha}$</td>
<td>$x_{y\beta}$</td>
<td>$x_{\alpha \alpha}$</td>
<td>$x_{\alpha \beta}$</td>
</tr>
<tr>
<td>1.1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>1.2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>1.3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>2.1</td>
<td>0</td>
<td>1/2</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>2.2</td>
<td>0</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>3.1</td>
<td>0</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>3.2</td>
<td>0</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Differential Phase Space Embedding

Phillipson+2018
Phase Space encodes dynamical information

Phillipson+2018
Phase Space encodes dynamical information

Q: How to generate phase space of unknown or stochastic systems?

Q: Are there ways to automate the extraction of information encoded in phase space?
Phase Space encodes dynamical information

Q: How to generate phase space of unknown or stochastic systems?

Q: Are there ways to automate the extraction of information encoded in phase space?

The Time Delay Method

The Recurrence Plot
Rossler Attractor (in 3D differential state space)
Time Delay Embedding

Rossler Attractor
(in 3D differential state space)

System dynamics is a black box

Measurable state
Time Delay Embedding

Rossler Attractor (in 3D differential state space)

Takens 1981:
For right choice of time delay and dimension (n) recovers original attractor

System dynamics is a black box

Measurable state

Finding Proper Takens transformation

$x(t) \rightarrow y(t) = (y_1(t), y_2(t), \ldots, y_n(t))$ $y_j(t) = x(t - \kappa_j), \; j = 1, 2, \ldots, n,$
Time Delay Embedding

Rossler Attractor (in 3D differential state space)

System dynamics is a black box

Measurable state

Finding Proper Takens transformation

Kaveh+ 2018
The Recurrence Plot:

Given a dynamical system represented by the trajectory “x” in a d-dimensional phase space, the recurrence matrix is defined as:

\[R_{i,j}(\epsilon) = \Theta(\epsilon - ||\vec{x}_i - \vec{x}_j||) \text{ for } i, j = 1, ..., N, \]

where \(\epsilon \) is a threshold distance and \(\Theta(\cdot) \) is the Heaviside function.

The following condition holds for two states less than the threshold distance apart:

\[\vec{x}_i \approx \vec{x}_j \Leftrightarrow R_{i,j} = 1. \]

The result is a binary 2D matrix -- the positions of each entry corresponds to two points in time.

Translation:
Non-zero entries tell us when two points in time are close to each other in phase space. The recurrence plot is the visualization of this binary matrix.
The Recurrence Plot:

- **Time Series**
 - White Noise
 - Sinusoidal
 - Logistic Map + Drift
 - Brownian Motion

- **Recurrence Plots**
 - “Line of Identity (LOI)”
The Recurrence Plot:

<table>
<thead>
<tr>
<th>Signal</th>
<th>RP</th>
<th>Phase Space Plot</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LORENZ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RÖSSLER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Signal**
 - ECG
 - LORENZ
 - RÖSSLER

- **RP**
 - Brownian Motion
 - Sun Spots
 - White Noise

Garciá & Romo 2013
Time Series

Recurrence Plot

Phase Space

Analog: the autocorrelation function
The Recurrence Plot:
Example: X-ray Binaries!
The Recurrence Plot:

Quantify the structure in the RP:
- Recurrence Quantification Analysis (RQA)
- **Examples**: longest diagonal line, average length of diagonal or vertical lines, # lines part of a diagonal feature versus isolated points
- A total of 16 quantities
 - Diagonal features: periodicities, determinism
 - Vertical features: time invariance, state changes

Characteristic Recurrence Plots

- White Noise
- Sinusoidal
- Logistic Map + Drift
- Duffing
Significance of Recurrence Features

The Surrogate Data method (Theiler et al. 2002):

- Data-driven null hypothesis testing
- Generate surrogate light curves that have:
 - the same power spectrum (phase),
 - i.e. take Fourier transform of time series, randomize the phases, and then inverse Fourier transform to obtain the surrogate
 - the same flux distribution (shuffled),
 - or both (IAAFT)
- Apply statistical test to data and ensemble of surrogates:
 - if the data is significantly different, we rule out the hypothesis of the surrogates (e.g. correlated noise)
- Surrogates *do not* retain dynamical information and carry the same noise and systematics as the original light curve
The Surrogate Data Method

Her X-1 (XRB)
Swift/BAT monitoring

Same PSD + flux distribution

Same PSD only

Same distribution only
Swift/BAT AGN

Hard X-ray (14 - 150 keV) monitoring of 46 AGN from the 70-month catalog, previously observed by power spectra analysis:

- PSD slope of -0.8 for all sources but one;
 Shimizu & Mushotzky 2013

3C 273

(Phillipson et al 2021a - in prep)
Swift/BAT AGN RPs

Variety of behaviors evident in RPs:

- diagonal structures: repeating behavior
- vertical/horizontal lines: trapped states
- large scale inhomogeneities: non-stationarity
- abrupt changes in texture: state changes

(Phillipson et al 2021a - in prep)
Swift/BAT AGN Recurrence Properties

Quantify the structure in the RP to find evidence for:

- Nonlinear behavior
 - Longest diagonal line length (Lmax)
- Determinism
 - Fraction of recurrences that are part of diagonal structures (DET)
- Stochastic behavior
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet
Swift/BAT AGN Recurrence Properties

Quantify the structure in the RP to find evidence for:

- **Nonlinear behavior**
 - Longest diagonal line length (Lmax)
- **Determinism**
 - Fraction of recurrences that are part of diagonal structures (DET)
- **Stochastic behavior**
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet

(Phillipson et al 2021a - in prep)
Swift/BAT AGN Recurrence Properties

Quantify the structure in the RP to find evidence for:

- **Nonlinear behavior**
 - Longest diagonal line length (Lmax)

- **Determinism**
 - Fraction of recurrences that are part of diagonal structures (DET)

- **Stochastic behavior**
 - Shannon entropy (randomness in the distribution of recurrences; Lentr)

Compare these measures to ensembles of surrogate data.

Are there correlations of significance of recurrence properties with physical characteristics:

- Type 1 vs. Type 2
- Obscured vs. unobscured
- Radio loud vs. radio quiet
Ongoing Research (& challenges)

Swift/BAT AGN:
- Only nominal results comparing to physical characteristics of AGN
- Strong evidence for nonstationary behavior
- **Ongoing:** application to 157-month catalog

Correlated Timing and Spectral variations for XRBs:
- Recurrence Plots as a moving window: uncovers changes in the variability as function of time; overlaps with spectral state transitions

Irregularly Spaced Time Series:
- The time delay method for embedding in phase space depends on evenly sampled time series
- Other methods for embedding:
 - Legendre polynomials, numerical differentiation
- Developing python package for recurrence analysis, including an alternative recurrence plot that handles irregularly spaced time series (coded for ZTF light curves)

Generally: Classification of variable sources using recurrence quantities
Rebecca Phillipson
(she/her)
Postdoctoral Scholar | University of Washington

Slack/Zoom
raphilli@uw.edu
@raphillipson
@beckastrosaurus

Fun with recurrence plots:
https://colinmorris.github.io/SongSim/#/rumourhasit
Example: Diverse Variability in Active Galaxies

From distribution of diagonal lines, obtain ‘correlation entropy’, compare to stochastic surrogates — long-term variability distinguishable from stochastic, linear mechanisms

Obtain ‘correlation entropy’ — long-term variability NOT distinguishable from stochastic surrogates

(Phillipson et al 2020)
Diverse Variability in Active Galaxies

“Close Returns”: pseudo-autocorrelation function – quantifies diagonal lines as a function of time delay

Has a QPO (Smith+2018)
Example: Changes in Variability States of XRBs

- Cyg X-1 experienced a series of failed state transitions and soft states (overall MJD 51,000 to MJD 53,900; Grinberg et al. 2013).
- A second, similar transition identified by DET/RR starts to occur at approximately MJD 56,000, where a second pro-longed, very soft X-ray period occurs in 2012 (Grinberg et al. 2013).
Possible Interpretation: Disk-dominated “soft” state corresponds to high determinism and regularity.
Example: Changes in Variability States of XRBs

Possible Interpretation: Corona-dominated “hard” state corresponds to high trapping time (laminarity) and low determinism.

(Phillipson et al 2021b - in prep)