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Causes and cases of covariate shift and domain
adaptation

Astronomy: Spectroscopical follow-up of astronomical sources not at
random. Most promising objects are selected.

Medical Imaging: Radiologists manually annotate pathologies (e.g.
in MRI’s). Mechanical configurations vary between medical centers.

Natural language processing: Annotated training data (e.g. Wall
street journal) is highly specialized.

Robotics: Supplementary simulated training data is added to support
real-life predictions (e.g. pedestrian detection).

Fairness aware machine learning: Ensure that automated
decision-making systems do not discriminate people based on certain
attributes (e.g. gender, race).

Knowledge transfer: Improve speech recognition based on natural
language processing data.
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Causes and cases of covariate shift and domain
adaptation:

Computer Vision: Use web-crawler collected product images to
classify real-world collected images.

Figure 0.1: Sample-images from the Office-Home dataset
Venkateswara et al. (2017), consisting of images from four domains:
Art, Clipart, Product and Real-World.
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Categorization and Terminology:

Source: Pan and Yang (2009)
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Definitions and Notation:

Let X ⊂ RF , F > 0, be the feature space and Y the label space with K > 1
classes, or a subset of R in the regression case. Different domains are
defined as different probability distributions p(x, y) over the same
feature-label space pair X ×Y (Kouw and Loog 2019).

Unsupervised Domain Adaptation:

Source data: DS = {(xs
i , y

s
i )}ns

i=1 with ns labelled samples,
from joint distribution pS (Domain DS ),

Target data: DT = {x t
j }

nt
i=1 with nt unlabelled samples,

from joint distribution pT (Domain DT ),

with pS (x, y) , pT (x, y).

Semi-Supervised Domain Adaptation:

At least one target label y t is given.
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Definitions:

Definition 1.1
Covariate shift appears only in X → Y problems, and is defined as case
where pS (y |x) = pT (y |x) and pS (x) , pT (x).

Definition 1.2
Prior (target) shift appears only in Y → X problems, and is defined as
case where pS (x |y) = pT (x |y) and pS (y) , pT (y).

Definition 1.3
Concept shift is defined as

pS (y |x) , pT (y |x) and pS (x) = pT (x) in X → Y problems

pS (x |y) , pT (x |y) and pS (y) = pT (y) in Y → X problems

Definitions from Moreno-Torres et al. (2012). Prior and Concept shift is
e.g. discussed in Widmer and Kubat (1996); Zhang et al. (2013).

CHASC-Astrostatistics talk February 25, 2020 6 / 57



Definitions:

Let f : X → RK our training function, and f an element of the hypothesis
space H . Then,

` : RK × Y → R is the loss function

R(f ) = E[`(f (x), y)] is the risk function

Aim: Minimize the risk RT on the target domain Dt , given labelled source
data DS and unlabelled target data DT .
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Sample/loss Reweighting

Covariate shift: pS (y |x) = pT (y |x) and pS (x) , pT (x)

Proposition 1 (Bickel et al. (2009); Shimodaira (2000))
If the support of pT (x) is contained in pS (x), the expected loss w.r.t. DT

equals the expected loss w.r.t. DS with weights w(x) = pT (x)/pS (x) for the
loss incurred by each x,

E(x,y)∼DT [`(f (x), y)] = E(x,y)∼DS

[
pT (x)
pS (x)

`(f (x), y)
]

This follows from:

RT (f ) =
∑
y∈Y

∫
X

`(f (x), y)
pT (x, y)
pS (x, y)

pS (x, y)dx

=
∑
y∈Y

∫
X

`(f (x), y)
pT (y |x)
pS (y |x)

pT (x)
pS (x)

pS (x, y)dx
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Maximum weighted log likelihood (Shimodaira 2000):

Assumptions:
i Covariate shift: pS (x) , pT (x)
ii Model misspecification

For sufficiently large n, Shimodaira (2000) proposes weighted maximum
likelihood estimation:

Lw (θ|x, y) :=
n∑

t=1

w(x) log p(y |x, θ), θ ∈ Θ.

For moderate sample sizes:

wα =
(
pT (x)
pS (x)

)α
, α ∈ [0, 1].

Optimal α can be determined by a variant of Akaike’s information criterion
(Akaike 1974).
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Example of Maximum Weighted Log-Likelihood:

XS ∼ N(0.5, 0.52) and XT ∼ N(0, 0.32)
y = −x + x3 + ε, with ε ∼ N(0, 0.32)
w(x) = pT (x)/pS (x) ∝ exp

(
−(x − µ̄)2/(2τ̄)

)

Figure 2.1: (Shimodaira 2000) Polynomial regression fitting with
degree d = 1. a) n=100 samples from pS (XS ). b) n=100 from pT (XT ).
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Importance Weighted Cross-Validation (Sugiyama et al.
2007):

Divide training data DS = {(xs
i , y

s
i )}ns

i=1 into k disjoint, equally-sized subsets
{D i

S }
k
i=1. Let fD j

s
(x) be a function learned from {D i

S }i,j , the weighted k-fold

cross-validation estimate of the risk R(n)(f ) is given by:

R̂
(n)
WCV :=

1
k

n∑
j=1

1

|D j
s |

∑
(x,y)∈D j

s

pT (x)
pS (x)

`(fD j
s
(x), y)

For weighted leave-one-out-CV (LOOWCV) it holds that (Sugiyama et al.
2007):

E(x,y)

[
R̂

(n)
LOOWCV

]
= R(nt−1),

where R(nt−1) is the risk on (nt − 1) target samples DT .
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Covariate Shift with Sample Selection Bias:

Sample selection bias is a widely studied issue (Heckman 1977; Little
and Rubin 2019; Rosenbaum and Rubin 1983).

Zadrozny (2004) introduce sample selection bias in a general
machine learning framework:

Bias scenario:

Examples (x, y, s) are drawn from a domain D, with
feature-label-selection space X ×Y × S.

S ∈ S is a latent, binary indicator variable that controls the training set
selection (s = 1).

S depends on X , but S is independent of Y given X
(P(s = 1|x, y) = P(s = 1|x)).
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Bias Correction (Zadrozny 2004)

Proposition 2 (Bias Correction (Zadrozny 2004))
For any distribution D, for all classifiers f , for any loss function
` = `(f (x), y), if we assume that P(s = 1|x, y) = P(s = 1|x) (that is, s and y
are independent given x), then

E(x,y)∼D [`(f (x), y)] = E(x,y)∼D̂ [`(f (x), y)|s = 1] ,

with D̂(x, y, s) :=
P(s = 1)

P(s = 1|x)
D(x, y, s)

We can minimize the expected target loss, by drawing samples from
D̂.
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Local and Global Learners (Zadrozny 2004):

Local: The output of the learner depends asymptotically only on
P(y |x).

Global: The output of the learner depends asymptotically both on
P(x) and on P(y |x).

Bayesian Classifier
Local Logistic Regression (correcly specified)

Hard margin SVM
Naive Bayes

Global Decision Trees
Soft margin SVM
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Importance Estimation:

Proposed methods to estimate w(x) =
(

pT (x)
pS (x)

)
Kernel density estimation (Shimodaira 2000)

Kernel Mean Matching – in reproducing kernel Hilbert space (Huang
et al. 2007)

Logistic regression (Bickel and Scheffer 2007; Zadrozny 2004)

Kernel Logistic Regression – joint optimization problem (Bickel et al.
2009)

Kullback-Leibler Importance Estimation Procedure (KLIEP)
(Sugiyama et al. 2008)

KLIEP extensions (Tsuboi et al. 2009) and unconstrained
least-squares importance fitting (uLSIF) (Kanamori et al. 2009; Umer
et al. 2019)
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Domain Dissimilarity and Generalization Error:

Domain dissimilarity is measured to estimate generalization error across
domains. Rényi divergence (Van Erven and Harremos 2014):

QRα [pT , ps ] =
1

α − 1
log2

∫
X

pαT (x)

pα−1
S (x)

dx

Other metrics: Kullback-Leibler divergence, Wasserstein metric,
Kolmogorov-Smirnoff statistic (Cover and Thomas 2012; Mahmud 2009)

Generalization error: With probability 1 − δ for δ > 0 (Cortes et al. 2010)

|eT (f ) − êW (f )| ≤ 25/4 2QR2 [pT ,ps ]/2 3/8

√
c
n

log
2ne

c
+

1
n

log
4
δ
,

with empirically weighted source error êW (f ), corresponding to a 0/1-loss,
and c, the pseudo-dimension of the hypothesis space (Kouw and Loog
2019; Vidyasagar 2002).
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Semi-supervised Domain Adaptation:

Given labelled source data Ds and target data DT = {x t
j }

nt
i=1, with nl labelled

examples and nt − nl unlabelled examples, nl << nt . Feature space is
X = RF .

Daumé III (2009): ”Frustratingly easy Domain Adaptation”

Augment the input space by Xa = R3F and define mappings
Φs ,Φt : X → Xa given by:

Φs(x) = 〈x, x, 0〉, Φt (x) = 〈x, 0, x〉

0 = 〈0, 0, . . . , 0〉 ∈ RF is the zero vector.

Train a multilayer-perceptron on the augmented data and predict on
the unlabelled target samples.
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Unsupervised Domain Adaptation:

Domain adaptation with deep neural networks (Long et al. 2015):

Figure 3.1: Architecture and learning stages of a deep
convolutional neural network. (Katole et al. 2015)

In the first layers DNNs learn general features, not specific to a
particular task (Yosinski et al. 2014).
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Domain Adaptation with Deep Neural Networks:

Idea: Jointly train the DNN on labelled source data and match moments of
deep source and target feature maps:

Figure 3.2: Deep Adaptation Network (DAN) (Long et al. 2015)

DAN risk function, with λ > 0, l1 = 6 and l2 = 8 :

min
Θ

1
n

n∑
i=1

`(f (xi), yi) + λ
l2∑

m=l1

d2
k (Dm

s ,D
m
t )
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Deep Adaptation Network (DAN):

Multiple kernel maximum mean discrepancies (Gretton et al. 2012):

d2
k (p, q) := || Ep [φ(xs)] − Ep [φ(x t )] ||2

Hk
,

with p = q iff d2
k (p, q) = 0, and φ denotes the deep feature map.

Proposition 3 (Long et al. (2015) )
Let f ∈ H be a hypothesis, eS (f ) and eT (f ) be the expected risks of source
and target respectively, then

|eT (f ) − êS (f )| ≤ 2dk (p, q) + C ,

where C is a constant for the complexity of hypothesis space and the risk
of an ideal hypothesis for both domains.
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Further influential approaches:

(Daume III and Marcu 2006):

Break source and target domain into three underlying distributions:
qS , qT and qG .

Employ conditional expectation maximization to split into source
specific, target specific and general information.

Use general and target samples for prediction on unlabelled set.

Tzeng et al. (2017)

Adversarial Discriminative Domain Adaptation

Ganin and Lempitsky (2014)

Unsupervised Domain Adaptation by Backpropagation
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Propensity Score Methods in Observational Studies:

Rosenbaum and Rubin (1983) introduce propensity score:

e(X ) = P(Z = 1|X ).

Treatment assignment Z is strongly ignorable, if

(i) (Y1,Y0) y Z |X and (ii) 0 < e(X ) < 1. (1)

If (1) holds, PS is a balancing score
⇒ conditional on the PS, treatment effect estimates unbiased

Four PS methods:
Inverse probability of treatment weighting (IPTW),
PS covariate adjustment, stratification and matching on PS
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Inverse Probability of Treatment Weighting (IPTW)

Weights in IPTW:

wATE =
Z

e(X )
+

1 − Z
1 − e(X )

and wATT = Z +
e(X )(1 − Z)

1 − e(X )
.

Lunceford and Davidian (2004) introduce a consistent average
treatment effect estimator

∆̂IPTW2 =
( n∑

i=1

Zi

ei(X )

)−1 n∑
i=1

ZiYi

ei(X )
−

( n∑
i=1

1 − Zi

1 − ei(X )

)−1 n∑
i=1

(1 − Zi)Yi

1 − ei(X )
.

CHASC-Astrostatistics talk February 25, 2020 26 / 57



1 Categorization and Terminology of Domain Adaptation and Covariate
Shift:

2 Covariate Shift and Sample Selection Bias:

3 Unsupervised and Semi-supervised Domain Adaptation:

4 Propensity Score Methodology:

5 Covariate Shift in Astronomy – Improving Supernova Type Ia
Classification:

CHASC-Astrostatistics talk February 25, 2020 27 / 57



STACCATO – Supernova Photometric Classification with
Biased Training sets

Data: “Supernova photometric classification challenge” (Kessler et al.
2010b)

17,330 simulated supernovae of type Ia, Ib, Ic and II.

For each SN, light curve observations are given in four color bands
C= (g,r,i,z).

Training set: 1,217 spectroscopically confirmed SNe with known types

Test set: 16,113 SNe with unknown types and photometric
information alone

Approach: STACCATO - ’Synthetically Augmented Light curve
Classification’ Revsbech et al. (2018)

Interpolation of light curves with with Gaussian processes

Compute diffusion map for feature extraction (Richards et al. 2012),
then classify the samples with a random forest.
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Light-Curve Data:

Figure 5.1: LC examples with GP fit.

Figure 5.2: Biased training and test
allocation.
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STACCATO - Bias effect on classification performance:

Figure 5.3: Revsbech et al. (2018)
Left: Classification performance on the spectroscopially biased training set.
Right: Randomly sampled unbiased training set (”Gold standard”).
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STACCATO – Augmentation and Stratification based on
Propensity Scores:

1 Propensity score PS = P(s = 1|x), where s = 1 indicates training set
assignment of sample x.

2 PS is computed with logistic regression with predictive covariates
redshift and brightness.

3 Divide the data set into 5 equally-sized groups, ordered by the PS.
4 Augment the training groups with synthetic LCs sampled under the

GP fit + add other training groups.
5 Compute diffusion maps for each of the training groups, including the

Nyström extensions (Richards et al. 2012).
6 Train separate random forest classifier on the training and predict the

test groups, respectively.
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Stratification based on estimated Propensity scores:

Figure 5.4: Composition of the five groups
based on the estimated propensity scores.
(Revsbech et al. 2018)
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Optimal Training Configuration:

Figure 5.5: Optimal strata and augmentation configuration. (Revsbech et al.
2018)

Optimal AUC of 0.961 is achieved with syntetical light curve
augmentation (biased AUC: 0.929).

1500 test set samples used from each strata to evaluate optimal
augmentation and strata configuration.
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Extended STACCATO:

1 Estimate the propensity score PS = P(s = 1|x), including redshift,
brightness and diffusion map coordinates.

2 Divide the data set into 5 equally-sized groups, ordered by the PS.
3 Check covariate balance in related training and test strata

SMD =
(x̄training − x̄test )√

s2
training+s2

test

2

.

4 Compute diffusion maps for each of the training groups, including the
Nyström extensions.

5 Train separate random forest classifier on the training and predict the
test groups, respectively.
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Strata comparison:

Figure 5.6: Composition of the five
groups based on the estimated PS.
(Revsbech et al. 2018)

Figure 5.7: Extended STACCATO:
Composition of the five groups, including
the diffusion map into the PS estimation.
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Balance assessment:

Figure 5.8: SMD between training and
test data of strata 1 plotted against raw
data SMD for both PS approaches.

Figure 5.9: SMD between training and
test data of strata 2-5 combined, plotted
against raw data SMD.
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Propensity score groups: Redshift vs. Brightness

Figure 5.10: Propensity score groups
using the old PS including training and
test samples.

Figure 5.11: Propensity score groups
using the new diffusion map PS
including training and test samples.
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Performance Comparison: STACCATO vs. Extended:

Figure 5.12: ROC curves of best
STACCATO combination (Revsbech
et al. 2018) using the optimized
synthetical light curve augmentation.

Figure 5.13: ROC curves of ’extended
STACCATO’ using the diffusion map
included PS.
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Best Performance: Extended STACCATO with redshift:

Figure 5.14: ROC curves of ’extended
STACCATO’ using the diffusion map
included PS and redshift as predictor
variable in random forest.
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Updated SPCC data:

Data: Updated SPCC challenge Kessler et al. (2010a).

21,318 simulated supernovae of type Ia, Ib, Ic and II.

For each SN, light curve observations are given in four color bands
C= (g,r,i,z).

Training set: 1,102 spectroscopically confirmed SNe with known types

Test set: 20,216 SNe with unknown types and photometric
information alone

Classification on updated SPCC set is more difficult due to bug-fixes in the
simulations.
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Updated SPCC: Strata comparison

Figure 5.15: Old STACCATO:
Composition of the five groups,
including redshift and brightness into
the PS estimation.

Figure 5.16: Extended STACCATO:
Composition of the five groups,
including the diffusion map into the
propensity score estimation.
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Updated SPCC – Balance Assessment:

Figure 5.17: SMD between training and
test data of stratum 1.

Figure 5.18: SMD between training and
test data of strata 2-5.
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Extended STACCATO results on updated SPCC

AUC bias Comp. 1 Comp. 2 Comp. 2 + red
grp1 0.984 0.981 0.981 0.988
grp2 0.890 0.906 0.959 0.966
grp3 0.780 0.952 0.954 0.959
grp4 0.848 0.950 0.951 0.955
grp5 0.910 0.939 0.938 0.943
all 0.902 0.944 0.953 0.955

Table 1: AUC results of extended STACCATO on updated SPCC data. No
synthetical data augmentation. Different training strata compositions
compared.

’Gold standard’ on unbiased (randomly selected) set: 0.961.
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State-of-the-art on updated SPCC data:

Figure 5.19: (Pasquet et al. 2019)

Results by Lochner et al. (2016); Pasquet et al. (2019) on the updated
SPCC data. Best performance: AUC 0.934.
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Photometric LSST Astronomical Time-Series
Classification Challenge (PLAsTiCC) (Kessler et al. 2019)

Figure 5.20: PLAsTiCC data summary. (Boone 2019; Kessler
et al. 2019)
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State-of-the-art SN classification (Boone 2019):

Figure 5.21: Best classification results during blinded (PLAsTiCC)
challenge (Boone 2019).
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STACCATO - summary

State-of-the-art results on SPCC data without data augmentation.

Strata selection has to be validated (e.g. stratified or weighted
cross-validation).

Applying STACCATO on PLAsTiCC data set (Boone 2019)

Generalization of methodology

Application of covariate shift and domain adaptation methods in
astronomy
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Thank you very much for your time!
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