Exoplanet detection: some statistical challenges

David Jones
Texas A&M University

Based on work with David Stenning, Eric Ford, Robert Wolpert, Thomas Loredo, and Xavier Dumusque

November 13, 2018
Radial velocity (RV) method

Doppler Shift due to Stellar Wobble

NASA, https://www.nasa.gov/
Radial velocity (RV) method

Stellar activity e.g. spots

NASA, https://www.nasa.gov/
How do we get the RV times series?

- Observation times: \(t_1, t_2, \ldots, t_n \)

Single observation – a vector of dimension \(p \):

\[
Y_{n \times p} = \begin{pmatrix}
\vdots
\end{pmatrix}
\]

- Astronomers typically reduce the data to RV time series:
RV corruption

Corrupted RV = Radial Velocity (m/s) + Stellar Activity RV Signal (m/s)

Corrupted RV (m/s)
Keplerian model for RV due to a planet

Keplerian model e.g. Danby (1988)

\[M(t) = \frac{2\pi t}{\tau} + M_0 \]
\[E(t) - e \sin E(t) = M(t) \]
\[\tan \frac{\phi(t)}{2} = \sqrt{\frac{1 + e}{1 - e}} \tan \frac{E(t)}{2} \]

RV due to planet: \(v(t) = K(e \cos \omega + \cos(\omega + \phi(t))) + \gamma \)

Parameters:

- \(K \) = velocity semi-amplitude
- \(\tau \) = planet orbital period
- \(M_0 \) = mean anomaly at \(t = 0 \)
- \(e \) = eccentricity
- \(\gamma \) = systematic velocity parameter
- \(\omega \) = argument of periapsis
So is it difficult to find a real planet?

- There are many planets, and large planets and planets with short orbital periods can be easy to find, but **Earth-like planets** are hard to find.
- Some notable detections have turned out to be **false positives**:
 - e.g. *Ghost in the time series: no planet for Alpha Cen B*, by Rajpaul, Aigrain, & Roberts (2015)
- In other cases, the **strength of evidence** for a planet may be (very!) inaccurately quantified – coming next!
Dumusque et al 2014: Spot Oscillation And Planet (SOAP) 2.0 radial velocity simulation software.
White noise stellar activity model: \(v_i = v_{\text{pred}}(t_i|\theta) + \epsilon_i \), where \(\epsilon_i \overset{iid}{\sim} N(0, \sigma^2) \)
Five challenges

1. Assessing evidence / Bayes factor estimation
2. Constructing stellar activity proxies
3. RV and stellar activity proxy modeling
4. Activity model selection / evaluation
5. Analyzing multiple stars jointly
Challenge I: Assessing evidence / Bayes factor estimation
Basic correlated RV noise model

RV observations: \(v_i = v_{\text{pred}}(t_i|\theta) + \epsilon_i \)

Correlated noise: \(\epsilon \sim \text{Normal}(0, \Sigma) \), where

\[
\Sigma_{i,j} = K_{i,j} + \delta_{i,j} \left(\sigma^2_i + \sigma^2_j \right)
\]

\[
K_{i,j} = \alpha^2 \exp \left[-\frac{1}{2} \left\{ \frac{\sin^2[\pi(t_i - t_j)/\tau]}{\lambda_p^2} + \frac{(t_i - t_j)^2}{\lambda_e^2} \right\} \right],
\]

Likelihood:

\[
\log \mathcal{L}(\theta) = -\frac{1}{2} (v - v_{\text{pred}}(\theta))^T \Sigma^{-1} (v - v_{\text{pred}}(\theta)) - \frac{1}{2} \log |\det \Sigma| - \frac{n_{\text{obs}}}{2} \log(2\pi)
\]
Multi-modal posteriors (plus other challenges)

Lomb-Scargle periodogram: essentially looks at the deviance between a sinusodal model and a constant model, e.g., see VanderPlas (2018)

Nelson et al. (2018)
https://arxiv.org/abs/1806.04683
Estimated Bayes factors: EPRV III data challenge

Dataset Number

$\langle \log \hat{Z} \rangle = -211.98$

$\langle \log \hat{Z} \rangle = -197.11$

$\langle \log \hat{Z} \rangle = -169.64$

$\langle \log \hat{Z} \rangle = -161.62$

$\langle \log \hat{Z} \rangle = -167.03$

$\langle \log \hat{Z} \rangle = -179.86$

Nelson et al. (2018)

https://arxiv.org/abs/1806.04683
Estimated Bayes factors: EPRV III data challenge

1-planet model

2-planet model

Nelson et al. (2018)

https://arxiv.org/abs/1806.04683
Equi-energy samplers:
- Additional bridge sampling step: Wang, Jones, & Meng (2018+)

Period finding:
- Lomb-Scargle periodogram, Lomb (1976), Scargle (1982)
- Supersmoother, Friedman (1984)
- Conditional entropy, Graham et al. (2013)
- Multi-band case e.g. VanderPlas & Ivezic (2015)

Yang Chen & David Jones have done some preliminary investigations in search of an approach that does not involve an exhaustive search
Challenge II: constructing stellar activity proxies
Physically motivated proxies

Motivation:
- If we can determine the level of activity, maybe we can work out if the RV signal is due to a planet or not

Examples:
- Normalized flux
- BIS
- $\log R'_{HK}$
Physically motivated proxies

Figure credit: Rajpaul et al. 2015

Figure credit: Rajpaul et al. 2015
Automated Discovery of Activity Proxies

Motivation for an automatic approach:
- Not clear that two or three proxies is enough
- For different stars / types of stars it may be best to use different proxies

Davis et al. (2017) investigate the use of PCA coefficients as activity proxies

\[Y_{n \times p} = \text{Time} \]

Figure credit: Davis et al. (2017)
Simple insight: we cannot get a pure planet RV signal, but we can get pure stellar activity... which can potentially help us find a planet in the corrupted RV signal.
Simple insight: we cannot get a pure planet RV signal, but we can get pure stellar activity . . . which can potentially help us find a planet in the corrupted RV signal.

Our modified PCA:

1. Extract RV: compute the apparent RV component, \(w \), and remove it from \(Y \)

\[
\tilde{Y} = Y - \frac{Yww^T}{\sum_i |w_i|^2}
\]

2. Find remaining structure: apply a dimension reduction technique (e.g. PCA) and use the new coordinates as proxies.
Automated Discovery of Activity Proxies

RV corruption and 2 PCA scores:

- Key: a planet will have no effect on the stellar activity proxies (blue signals)
The data we use looks more like this.
Comparison to Rajpaul et al. (2015)

Planet with 7 day orbit

Detection power

0.0 (0%)
0.5 (6.7%)
1.0 (13.4%)

AIC−1 (our indicators)
Preliminary (our indicators)
Rajpaul et al. (2015a)
R−AIC−3
R−CV−3

Planet signal m/s (% of stellar activity amplitude)
For more complex forms of stellar activity, other techniques may extract more of the relevant information:

- Independence component analysis (ICA)
- Diffusion maps
Challenge III: RV and stellar activity proxy modeling (in the case of a single spot)
Def: a **Gaussian process** is a stochastic process \(X(t), t \in T \) s.t. for any \(t_1, \ldots, t_m \in T \), the vector \((X(t_1), \ldots, X(t_m)) \) has a multivariate Normal distribution.

- e.g. apparent RV time series \(\sim N(0, \Sigma) \)
- **Quasi-periodic** covariance function

\[
\text{Cov}(X(t), X(s)) = \exp \left(- \frac{\sin^2(\pi(t-s)/\tau)}{2\lambda_p^2} - \frac{(t-s)^2}{2\lambda_e^2} \right)
\]

- periodic
- local
Dependent Gaussian processes:

\[\Delta RV(t) = a_{11} X(t) + a_{12} \dot{X}(t) + \sigma_1 \epsilon_1(t) \]

\[\log R'_HK(t) = a_{21} X(t) + \sigma_2 \epsilon_2(t) \]

\[\text{BIS}(t) = a_{31} X(t) + a_{32} \dot{X}(t) + \sigma_3 \epsilon_3(t) \]
Constructing the covariance matrix

\[\Sigma = \begin{pmatrix}
\Sigma^{(1,2)} & \Sigma^{(1,2)} & \Sigma^{(1,3)} \\
\Sigma^{(2,1)} & \Sigma^{(2,2)} & \Sigma^{(2,3)} \\
\Sigma^{(3,1)} & \Sigma^{(3,2)} & \Sigma^{(3,3)}
\end{pmatrix} \]

- **Example:** \(\Sigma^{(1,2)} \) gives the covariance between observations of \(\Delta RV(t) \) and \(\log R'_HK(t) \)

- **Calculation:** we use the fact that

\[
\text{Cov}(X(t), \dot{X}(s)) = \frac{\partial K(t, s)}{\partial s}
\]

\[
\text{Cov}(\dot{X}(t), \dot{X}(s)) = \frac{\partial^2 K(t, s)}{\partial t \partial s}
\]

See Theorem 2.2.2 in Adler (2010)
They weight the measurement errors to get a better fit to the first component (RV).
Overly constrained, causing strange behaviour

Overly constrained, causing strange behaviour

![Graphs showing gpca1, gpca2, gpca3 scores over time and log-likelihood over iterations.](image-url)
General class of GP models we consider

\[\text{apparent.RV}(t_i) = a_{11}X(t_i) + a_{12}\dot{X}(t_i) + a_{13}\ddot{X}(t_i) + a_{14}Y_1(t_i) + \sigma_i \epsilon_1(t_i) \]

\[\text{Proxy1}(t_i) = a_{21}X(t_i) + a_{22}\dot{X}(t_i) + a_{23}\ddot{X}(t_i) + a_{24}Y_2(t_i) + \sigma_i \epsilon_2(t_i) \]

\[\text{Proxy2}(t_i) = a_{31}X(t_i) + a_{32}\dot{X}(t_i) + a_{33}\ddot{X}(t_i) + a_{34}Y_3(t_i) + \sigma_i \epsilon_3(t_i) \]

\[\ldots \]

- Green shows model proposed by Rajpaul et al. (2015)
- In our approach some of the \(a_{ij} \)'s are set to zero

Note: adaptation of *Linear Model of Co-regionalization* (LMC) e.g. see Journel and Huijbregts (1978), Osborne et al. (2008), and Alvarez and Lawrence (2011)
Thoughts / comments:

- **Taylor**: indefinitely extending the Taylor series approach doesn’t seem like a good idea
- **Quasi-periodic**: in practice, spots will change at least every couple of stellar rotations, so periodic behaviour will constantly be changing
- **Mean function**: if the mean function is very structured then it may be best to model this more explicitly, rather than using a zero mean GP
- **Kernel learning**: e.g. spectral density modeled by Gaussian mixture (Wilson & Adams, 2013), a Bayesian version (Olivia et al. 2016), transform input (time) before applying standard kernel (Wilson et al., 2016)
- **Non-stationarity**? as spots come and go, stationarity may not be a good assumption

Impossible challenge? learn dependence structure between time series, but also allow the dependence to develop over time.
Challenge IV: model selection / evaluation
Stage 1: Preliminary model selection

Number of models = 3375

Goal: short-list adequate stellar activity models for second stage

Criteria for short-listing models:

1. AIC
2. BIC
3. CV criterion
Typical AIC / BIC 1st ranked model fit

<table>
<thead>
<tr>
<th></th>
<th>X coeff</th>
<th>(\dot{X}) coeff</th>
<th>(\ddot{X}) coeff</th>
<th>Y coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>apparent.RV</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC2</td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
</tbody>
</table>
Stage 2: Hypothesis Testing

How much **power** does the LRT have?

- H_0: no planet
- H_A: planet

Power computation: null distribution generated via SOAP 2.0 simulations for Sun-like stars with a single spot

Question: How to generate null distribution in general?

- Unknown and time varying activity
- Different types of star
Detection Power: orbital period = 7 days

Planet with 7 day orbit

Planet signal m/s (% of stellar activity amplitude)

Detection power

AIC models
CV models
Preliminary
White noise
Challenge V: analyzing multiple stars jointly
Questions / comments

Questions:
- If we have multiple “similar” stars, all with their own activity, can we gain from pooling information across stars?
- E.g. can we learn basis vectors to capture activity for this type of star
- Since in practice, we won’t know the exact form of activity, we want a way to learn likely forms of activity, so we can integrate over these rather than integrating with respect to our prior on the type of activity
Possible hierarchical structure

- Star parameters
 - Activity parameters
 - RV and indicators
 - RV and indicators
 - RV and indicators
 - Activity basis
 - RV and indicators
 - RV and indicators
 - RV and indicators
Five challenges

1. Assessing evidence / Bayes factor estimation
2. Constructing stellar activity proxies
3. RV and stellar activity proxy modeling
4. Activity model selection / evaluation
5. Analyzing multiple stars jointly
Thanks! Questions?