ACTIVE X-RAY OPTICS FOR THE NEXT HIGH RESOLUTION X-RAY OBSERVATORY

Martin Elvis Harvard-Smithsonian Center for Astrophysics Cambridge, Massachusetts, USA

43 YEARS OF X-RAY ASTRONOMY: 1 BILLION TIMES MORE SENSITIVE

Detector Area, Exposure time

angular resolution

Launched by NASA 7 years ago: 23 July 1999 Has revolutionized X-ray astronomy ...and all of astronomy

THE CHANDRA REVOLUTION: QUANTITATIVE : 70 TO 1400 SOURCES

THE STAR FORMATION REGION IN ORION

THE CHANDRA REVOLUTION: QUALITATIVELY NEW STRUCTURES

Chandra: ~0.5"

THE SUPERNOVA REMNANT CASSIOPEIA A

CHANDRA'S HIGH RESOLUTION: A TERRESTRIAL ANALOG

Any sign of life? What's this odd thing?

I get it!

Martin Elvis, X-ray & XUV Active Optics, Soleil, 14-CHANDRA'S 1/2" DOES NOT TELL ALL

Chandra: ~0.5"

THE ANTENNAE COLLIDING GALAXIES SYSTEM

Hubble: ~0.1"

CHANDRA ONLY GIVES THIS DETAIL ON THE NEAREST OF EACH CLASS OF CELESTIAL OBJECT

Chandra: ~0.5"

THE GIANT GALAXY M87 IN THE VIRGO CLUSTER

X-RAY ASTRONOMY NEEDS TO MOVE INTO ITS 'HUBBLE' ERA

A HIGH RESOLUTION X-RAY SUCCESSOR TO CHANDRA IS OBVIOUSLY NEEDED

Chandra mirrors are heavy

- ✤ 1.5 cm thick glass cylinders
- No current plans for a Chandra-class sub-arcsec - mission - world-wide
- No space agency developing high resolution X-ray mirrors
- Planned missions revert to pre-Chandra image quality:
 - Constellation-X (NASA) HEW=15", 75μrad (5" goal); concentrates on area and spectral resolution
 - ***** *XEUS* (ESA) **HEW = 5", 25** μrad (2" goal)

A HIGH RESOLUTION SUCCESSOR TO CHANDRA: DESIDERATA

A_{eff} > 1 m² (10x Chandra)
* 10 - 100 m² preferred
* Can't use integral shells
⇒ segments
HEW < 0.25" (<0.5 Chandra)
* HEW ~< 0.1" preferred
Mirror mass < 1000 kg
* Launcher capability, cost
Requires <1/10 M/A_{eff} of Chandra
i.e. New Technology

SCIENCE GOALS FOR A NEXT GENERATION HIGH RESOLUTION X-RAY OBSERVATORY

SENSITIVITY:

X-RAYS ARE A CHANNEL TO THE EPOCH OF THE FIRST STARS AND BLACK HOLES

- Strong X-ray emission expected from early universe $(z\sim10)$ objects
 - Collapse of first overdensities
 - Growth of first black holes
 - must grow at maximum [Eddington] rate to make quasars by z=6
 - Affect re-ionization? Madau et al. 2004 ApJ 604, 484
 - ✤ Gamma-ray Bursts probe to z=10?

Probes of z=10?

- Optical, UV not available HI absorption
- ✤ FIR, mm limited by lack of molecules at high z
- ✤ Radio has HI 21 cm line ⇒ <140 MHz</p>
- Near-IR and X-ray have atomic features: 1-10μm, 0.1-1.0 keV

WMAP Cosmic Microwave Background fluctuations map

IMAGING: MERGING BLACK HOLES AND AGNS

- Merging black holes give insight into merger tree vs. redshift
- Tests models of galaxy formation
- But early quasars may be heavily dust enshrouded
- X-rays can see through a factor 10²⁰ optical obscuration
 - ✤ 10keV rest frame
- Needs high angular resolution
 - ✤ 2 kpc at z=1 is 0.25"
 - (~0.1 galaxy dia.)
 - Higher z does not need higher angular resolution

Chandra image of NGC6240: two AGNs in a merge Stefanie Komossa et al. Schematic Black Hole Merger Tree Marta Volonteri, priv. Comm. •

Spectroscopy: Warm-Hot Intergalactic Medium

- Chandra detected the Warm-Hot Intergalactic Medium where most of the baryons reside in the local universe (z<1)
- X-rays can measure heating and enrichment of IGM
- Needs R=3000
 - Resolve thermal widths of lines
 - ✤ R=400 with Chandra
 - Set by HEW of mirror
 - ✤ Need HEW <0.1"</p>

Chandra Spectrum of the lo WHIM toward MKN 421

Nicastro et al. 2005 Nature

X-RAYS AT Z~10 AGE = 480 MYR (3.5%)

- Faint: 1st BH fluxes: ~10⁻³ of Deepest
 Chandra surveys
- ◆ Large area, A_{eff} ~ 100 m²
- ◆ High angular resolution
 ◆ HEW ~ 0.1", 0.5µrad
 - Reduce background

Discriminate from foreground z=3 galaxies

- ◆ 0.1-10 keV band
 - ✤ spectra kT~10keV / (1+z) ~1 keV
- Defines next generation high resolution large X-ray Observatory:

GENERATION-X

GENERATION-X VISION MISSION STUDY

- Gen-X selected as NASA Vision Mission study in 2003
- Large, high resolution X-ray Observatory to follow *Chandra*, *XMM-Newton* and *Constellation-X*
- Nominal Launch date ~ 2020
- Mission concept studies
 * JPL 'Team-X' : formation flying
 * GSFC 'IMDC': single spacecraft
- Mirror studies: SAO, GSFC
- Detector studies: SAO, MIT
- Presented to NASA committees

Generation-X Vision Mission Study Report

Prepared for National Aeronautics and Space Administration

GENERATIO	ON-X VISION M	ISS	Martin Elvis, X-ray & XUV Active O	ptics, Soleil, 14- <mark>∨</mark>
 Roger Brissenden (P Martin Elvis 	I) <u>SAO</u>		Webster Cash	<u>Colorado</u>
 Pepi Fabbiano Paul Gorenstein 		♦	Martin Weisskopf	<u>MSFC</u>
 Paul Reid Dan Schwartz Harvey Tananbaum 			Mel Ulmer	<u>Northwe</u>
 Rob Petre Richard Mushotzky Nick White Will Zhang 	<u>GSFC</u>	♦	Niel Brandt	<u>PSU</u>
			Robert Cameron Steve Kahn	<u>Stanford</u>
 Mark Bautz Claude Canizares Enectali Figueroa-Fel David Miller Mark Schattenburg 	<u>MIT</u> liciano		Rogier Windhorst and collaborators	<u>ASU</u>
			75 People, 14 Institutions,5 Industry Partners,	

2 NASA Centers

GEN-X STUDY OPTIONS: 1

Option 1: GSFC IMDC

Six identical spacecraft, 8m dia mirrors

2/3 filling factor: 60° segments:

50 meter focal length

- Thermal mirror control feasible
- Optical bench tolerances OK

Martin Elvis, X-ray & XUV Active Optics, Soleil, 14-

GEN-X STUDY OPTIONS: 2

Option 2: JPL Team X

- Separate mirror, detector spacecraft. formation flying.
- 20m dia. Mirror; 125 meter focal length (same f-ratio as option 1)
- Single instrument suite
- Able to change instrument spacecraft
- Main Challenge: maintaining s/c separation

HIGH RESOLUTION X-RAY OPTICS FOR ASTRONOMY: CHALLENGING REQUIREMENTS

- High angular resolution, large area 🗘 thin shells
- Axial figure errors comparable to Chandra
- Azimuthal figure errors substantially better

On-orbit adjustment of figure?

Advantages

- Reduced ground calibration
- Reduced launch stability requirements
- Can operate away from room temperature
- Slow adjustments ~10⁻⁵ Hz high orbit
 C.f. 10 Hz on ground-based telescopes

Challenges

- Optical path clearance
- Sensing misalignments
- Calculating adjustmen
- Applying corrections
- Stable actuators

X-RAY TELESCOPES VS. SYNCHROTRONS

- Low rates: 10 ct s⁻¹ m⁻² is bright
- ➡ Nested shells Giacconi & Rossi 1962 to build up collecting area
- Thin substrates: few 100 mm
- No blockage of optical path allowed
- Parabola Hyperbola mirror pairs
- Energy range:
 - E > 0.1 keV Galaxy absorption
 - E < 10 keV Area, focal length limits
- Incoherent
 - **1**" [5µrad] is good
 - Diffraction limit **25 mas** on Chandra
 - C.f. 500 mas achieved
 - 0.1" [0.5μrad] goal

Suzaku Mirror segment

- Jitter removed via star camera
 - Photon counting correct each photon position
- Space mirrors are expensive

PIEZOELECTRIC BI-MORPH (PBM) ACTIVE X-RAY OPTICS

- Working at Synchrotrons
 - news to astronomers
- 10 year program by Signorato et al.
- Operational
 - 16-, 32- element
 - ~1 m long optics
 - 2 cm sized actuators
- Kirkpatrick-Baez configuration

Signorato et al.,2004, SPIE

Photo courtesy of SESO

PIEZOELECTRIC BI-MORPH MIRRORS (PBM):

GOOD PROPERTIES FOR ASTRONOMY II

- Piezos parallel to mirror surface
- Reduce amplitude of errors by factor 15
 - From 150 nm to 10 nm
 - Factor 100 more improvement possible
- C.f. mechanical actuators:

No -

- Optical path blockage
- lubricants
- hysterisis
- backlash

PIEZOELECTRIC BI-MORPH MIRRORS (PBM):

GOOD PROPERTIES FOR ASTRONOMY I

- Thin: no optical path blockage
- Natural match to thin reflectors
 - 0.2 mm
- Low power, weight
- Existing synchrotron K-B mirrors comparable size to telescope segments
- Pairs of oppositely directed piezos remove T dependence
- Stable over days, months
- No anticlastic effect ('saddling')

Suzaku Mirror segment

ACTIVE X-RAY OPTICS FOR ASTRONOMY AND PBM

Synchrotron PBM work:

- Raises Gen-X TRL substantially

ACTIVE OPTICS: CFA/ARGONNE PARTNERSHIP

Argonne National Labs:

- Center for Nanoscale Materials Director: Eric Isaacs
- piezo materials
 - Rad. Hard
 - 2-D deflections
 - power
- Harvard-Smithsonian CfA:
 - Center for X-ray Technology Director: Steve Murray
 - Forming substrates via replication
 - PBM metrology, ray tracing
 - Calibration: optics, computing

Harvard-Smithsonian Center for Astrophysics

PBM Development needed for X-ray Astronomy

- Thin replica substrates bonding PBM
- 2-D Wolter geometry
 - axial + azimuthal curvature
- Radiation hard piezo materials
- Cold operation piezos
- getting the wires out
- Mass production: 100 m² A_{eff}
 ⇒ 10⁴ m² polished area
 - Cost
 - Speed ~3 year production
- $\sim 2x10^5$ (2 cm actuators)/m² A_{eff} :
 - Calibration
 - Calculation problem -
 - closed loop essential in orbit

Martin Elvis, X-ray & XUV Active Optics, Soleil, 14-ACTIVE X-RAY OPTICS: FIGURE IMPROVEMENT Need factor ~100 correction: • ~400 nm errors to ~4 nm

- Finite element analysis shows feasibility of control *in principle!*
 - Begin with Con-X optic goal,
 - 2 cm axial actuators give figure correction v < 0.025 mm⁻¹ I.e. Fourier low pass filter
 - Correct to:
 - 6.5 nm rms 0.001<v<0.01 mm⁻¹
 - ~ 2 times Con-X goal
 - 1.6 nm rms 0.01<v<0.1 mm⁻¹
 - ~ 10 times Con-X goal

ACTIVE X-RAY OPTICS : ANGULAR RESOLUTION

- Meets 0.1 arcsec HPD goal at 1 keV
- Easier with shorter focal length due to larger graze angles hence less diffraction

Parameter	Model Value	
Primary Cone Angle	1 degree	
Secondary Cone Angle	3 degrees	
Primary Aft Radius (m)	10	
Secondary Forward Radius (m)	10	
Reflector Axial Length (m)	1.009	
Reflector Azimuthal Width (m)	1.020	
Reflector Thickness (mm)	0.2	
Piezo Thickness (mm)	0.1 or 0.04	
Piezo Cell Axial Length (mm)	15	
Piezo Cell Azimuthal Width (mm)	50	
Gap Between Cells (mm)	1	

Martin Elvis, X-ray & XUV Active Optics, Soleil, 14-

Martin Elvis, X-ray & XUV Active Optics, Soleil, 14-ACTIVE X-RAY OPTICS ALIGNMENT: SIGNAL & COMPUTE CHALLENGES

- 10⁵ actuators! How to sense adjustments?
- Form image ~2% forward of focus
- ⇒ Separate images of each shell, and azimuthal sector of parabola-hyperbola pair
 - c.f. Chandra 'Ring Focus'
- Factorizes calculation into small parallel steps
 - Each shell segment P-H pair is independent
 - Separate P, H via finite focus source?
- Example: 20m dia mirror, 10cm actuators
 - Annular images 400 µm thick: 20 resolved elements with 20 µm pixels

Chandra Ring Focus Test

ACTIVE OPTICS ALIGNMENT: COMPUTATION

- Need 10⁹ photons for 3% precision in each of 10⁶ elements [1000 ct/element]
- Sco X-1 counts 10⁷ ct/s/100m²
- I.e. 10^9 counts at 10^{-2} Hz
 - Many iterations in 1 day 10⁻⁵ Hz
 - Low duty cycle in ~months
- Keck adjusts 349 actuators at 10 Hz van Dam et al. 2004
- ⇒ 3x10⁵ corrections at processing current Keck rate

Chandra Ring Focus Test

ACTIVE X-RAY OPTICS:

A MORE IMMEDIATE FLIGHT GOAL

- Need flight demonstration: e.g.
 - >=5 x Chandra Area
 - >=2 x Chandra resolution
 - 0.5 m² $A_{eff} = 50 \text{ m}^2$ polished area
 - $\sim 10^5$ actuators
 - Focal length = 9 m [same as Chandra]
 - Outer dia. = 1.4 m [same as Chandra]
- Probe Class Mission?
 - 'Decadal Survey'
 - Committees formed 2007
 - reports 2009

Chandra: ~0.5", 2.5µrad

HE SUPERNOVA REMNANT CASSIOPEIA

ACTIVE X-RAY OPTICS: SHORT TERM GOALS

- Primary: Demonstrate 1 metersized Wolter mirror segment in laboratory to Chandra HEW specs
- Needed soon for 'Decadal Survey' begins 2007, reports 2009
- Secondary: space-qualified PBM materials; compute problem; wiring; ...

Harvard-Smithsonian Center for Astrophysics

ACTIVE X-RAY OPTICS FOR THE NEXT HIGH RESOLUTION X-RAY OBSERVATORY

- PBMs address biggest technical challenge
 - Low optical path blockage
 - 0.1 arcsec achievable with PBMs
 - Good match to weight/power/stability requirements
 - In operation at synchrotrons
 - Raised TRL substantially
- Major development needed for telescope use
- Rapid development program could further all imaging X-ray astronomy missions
- Interested in partnerships

Harvard-Smithsonian Center for Astrophysics

THE CRAB NEBULA A Cosmic Synchrotron